Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
He Peiqing, Dewi Seswita Zilda, Li Jiang, Zhang Xuelei, Cui Jingjing, Bai Yazhi, Gintung Patantis, Ekowati Chasanah. Diversity of microbe and hydrogenase genes from a coastal hot spring of Kalianda, Indonesia[J]. Haiyang Xuebao, 2016, 38(6): 119-129. doi: 10.3969/j.issn.0253-4193.2016.06.013
Citation: He Peiqing, Dewi Seswita Zilda, Li Jiang, Zhang Xuelei, Cui Jingjing, Bai Yazhi, Gintung Patantis, Ekowati Chasanah. Diversity of microbe and hydrogenase genes from a coastal hot spring of Kalianda, Indonesia[J]. Haiyang Xuebao, 2016, 38(6): 119-129. doi: 10.3969/j.issn.0253-4193.2016.06.013

Diversity of microbe and hydrogenase genes from a coastal hot spring of Kalianda, Indonesia

doi: 10.3969/j.issn.0253-4193.2016.06.013
  • Received Date: 2015-07-07
  • During July, 2011, samples were collected from a coastal hot spring of Kalianda, Indonesia. Clone libraries of 16S rRNA genes of bacteria and archaea, and hydrogenase genes were constructed. The sequences were determined, and the diversity were also analyzed. The results demonstrated that the coastal hot spring hosted 16 phyla. Proteobacteria was dominant in hydrothermal fluid and sediment, accounting for 59.5% and 73.3%, respectively. Cyanobacteria was the most abundant in mat with abundance of 56.5%. Ammonia oxidizing Crenarchaeota was predominant in archaea. More than 70% of the species were most related to marine microbes, indicating the marine property of this system. About 20% of the species were most related to the thermophilic or moderate thermophilic microbes from terrestrial hot springs. These species might originate from the hyperthermal subfloor and involve in the process of iron oxidation and reduction, hydrogen oxidation, sulfur oxidation and nitrate reduction. The composition and distribution of NAD(P)-linked bidirectional NiFe-hydrogenase and FeFe-hydrogenase genes were also shaped by temperature and salinity. Our research provided an insight into the shallow-sea hydrothermal system.
  • loading
  • Dando P R, Hughes J A, Leahy Y, et al. Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc[J]. Cont Shelf Res, 1995, 15(8): 913-929.
    Hoaki T, Nishijima M, Miyashita H, et al. Dense community of hyperthermophilic sulfur-dependent heterotrophs in a geothermally heated shallow submarine biotope near Kodakara-jima Island, Kagoshima, Japan[J]. Appl Environ Microbiol, 1995, 61(5): 1931-1937.
    Tarasov V G, Gebruk A V, Mironov A N, et al. Deep-sea and shallow-water hydrothermal vent communities: two different phenomena?[J]. Chem Geol, 2005, 224(1/3): 5-39
    Maugeri T L, Lentini V, Gugliandolo C, et al. Bacterial and archaeal populations at two shallow hydrothermal vents off Panarea Island (Eolian Islands, Italy)[J]. Extremophiles, 2009, 13(1): 199-212.
    Zhang Yao, Zhao Zihao, Chen C T A, et al. Sulfur metabolizing microbes dominate microbial communities in andesite-hosted shallow-sea hydrothermal systems[J]. PLoS One, 2012, 7(9): e44593.
    Tang Kai, Liu Keshao, Jiao Nianzhi, et al. Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system[J]. PLoS One, 2013, 8(8): e72958.
    Lentini V, Gugliandolo C, Bunk B, et al. Diversity of prokaryotic community at a shallow marine hydrothermal site elucidated by illumina sequencing technology[J]. Curr Microbiol, 2014, 69(4): 457-466.
    Price R E, Lesniewski R, Nitzsche K S, et al. Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separation[J]. Front Microbiol, 2013, 4: 158.
    Hirayama H, Sunamura M, Takai K, et al. Culture-dependent and-independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi island, Japan[J]. Appl Environ Microbiol, 2007, 73(23): 7642-7656.
    Hobel C F V, Marteinsson V T, Hreggvidsson G Ó, et al. Investigation of the microbial ecology of intertidal hot springs by using diversity analysis of 16S rRNA and chitinase genes[J]. Appl Environ Microbiol, 2005, 71(2): 2771-2776.
    Lane D J. 16S/23S sequencing[M]//Stackbrandt E, Goodfellow M. Nucleic Acid Techniques in Bacterial Systematics. New York: John Wiley & Sons, 1991: 115-176.
    DeLong E F. Archaea in coastal marine environments[J]. Proc Natl Acad Sci U S A, 1992, 89(12): 5685-5689.
    Barz M, Beimgraben C, Staller T, et al. Distribution analysis of hydrogenases in surface waters of marine and freshwater environments[J]. PLoS One, 2010, 5(11): e13846.
    Schmidt O, Drake H L, Horn M A. Hitherto unknown [Fe-Fe]-hydrogenase gene diversity in anaerobes and anoxic enrichments from a moderately acidic fen[J]. Appl Environ Microbiol, 2010, 76(6): 2027-2031.
    Codon Code Corporation (2011) Codon code aligner[EB/OL]. http://www.codoncode.com/aligner/.
    RIMER-E, multivariate statistics for ecologists[EB/OL]. http://www.primer-e.com/.
    Schloss P D, Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness[J]. Appl Environ Microbiol, 2005, 71(3): 1501-1506.
    Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucleic Acids Symp Ser, 1999, 41(2): 95-98.
    Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Res, 1994, 22(22): 4673-4680.
    Kumar S, Tamura K, Jakobsen I B, et al. MEGA2: molecular evolutionary genetics analysis software[J]. Bioinformatics, 2001, 17(12): 1244-1245.
    Staudigel H, Albarède F, Blichert-Toft J, et al. Geochemical Earth Reference Model (GERM): description of the initiative[J]. Chem Geol, 1998, 145(3/4): 153-159.
    Chen Ming, Yan Yongliang, Zhang Wei, et al. Complete genome sequence of the type strain Pseudomonas stutzeri CGMCC 1.1803[J]. J Bacteriol, 2011, 193(21): 6095.
    Beckwith C R, Edwards M J, Lawes M, et al. Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth[J]. Front Microbiol, 2015, 6: 332.
    Doronina N V, Kaparullina E N, Trotsenko Y A. Methyloversatilis thermotolerans sp. nov., a novel thermotolerant facultative methylotroph isolated from a hot spring[J]. Int J Syst Evol Microbiol, 2014, 64(1): 158-164.
    Hirayama H, Takai K, Inagaki F, et al. Thiobacter subterraneus gen. nov., sp. nov., an obligately chemolithoautotrophic, thermophilic, sulfur-oxidizing bacterium from a subsurface hot aquifer[J]. Int J Syst Evol Microbiol, 2005, 55(1): 467-472.
    Vésteinsdóttir H, Reynisdóttir D B, Örlygsson J. Hydrogenophilus islandicus sp. nov., a thermophilic hydrogen-oxidizing bacterium isolated from an Icelandic hot spring[J]. Int J Syst Evol Microbiol, 2011, 61(2): 290-294.
    Slobodkina G B, Reysenbach A L, Panteleeva A N, et al. Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria[J]. Int J Syst Evol Microbiol, 2012, 62(10): 2463-2468.
    Iino T, Nakagawa T, Mori K, et al. Calditerrivibrio nitroreducens gen. nov., sp. nov., a thermophilic, nitrate-reducing bacterium isolated from a terrestrial hot spring in Japan[J]. Int J Syst Evol Microbiol, 2008, 58(7): 1675-1679.
    Weidler G W, Gerbl F W, Stan-Lotter H. Crenarchaeota and their role in the nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps[J]. Appl Environ Microbiol, 2008, 74(19): 5934-5942.
    Vignais P M, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview[J]. Chem Rev, 2007, 107(10): 4206-4272.
    Appel J, Phunpruch S, Steinmüller K, et al. The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis[J]. Arch Microbiol, 2000, 173(5/6): 333-338.
    Troshina O, Serebryakova L, Sheremetieva M, et al. Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation[J]. Int J Hydr Energ, 2002, 27(11/12): 1283-1289.
    Zinger L, Amaral-Zettler L A, Fuhrman J A, et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems[J]. PLoS One, 2011, 6(9): e24570.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1058) PDF downloads(614) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return