Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Song Hongjun, Zhang Xuelei, Wang Baodong, Sun Xia, Wang Xiao, Xin Ming. Bottom-up and top-down controls of the phytoplankton standing stock off the Changjiang Estuary[J]. Haiyang Xuebao, 2014, 36(8): 91-100. doi: 10.3969/j.issn.0253-4193.2014.08.010
Citation: Song Hongjun, Zhang Xuelei, Wang Baodong, Sun Xia, Wang Xiao, Xin Ming. Bottom-up and top-down controls of the phytoplankton standing stock off the Changjiang Estuary[J]. Haiyang Xuebao, 2014, 36(8): 91-100. doi: 10.3969/j.issn.0253-4193.2014.08.010

Bottom-up and top-down controls of the phytoplankton standing stock off the Changjiang Estuary

doi: 10.3969/j.issn.0253-4193.2014.08.010
  • Received Date: 2013-08-12
  • Rev Recd Date: 2014-02-10
  • Based on the field survey data in August 2010, November 2010 and May 2011, and the following analysis from generalized additive model (GAM), the bottom-up and top-down effects on the phytoplankton standing stock (represented as chlorophyll a concentrations) off the Changjiang Estuary were studied. The results showed that the average concentrations of nutrients in the high chlorophyll zone (HCZ) were lower than those in the entire region. The concentrations of phosphate (0.48 μmol/L) and silicate (8.96 μmol/L) in spring in HCZ were the lowest among the three seasons, and the DIN/P ratio (43.3) was the highest, which help to the frequent dinoflagellate bloom in spring. The Si/DIN ratio in the HCZ was higher than that in the entire region in summer, but very close in spring and autumn, which help to the diatom bloom in summer. The concentrations of total suspended solids (TSS) in the HCZ in spring and summer were significantly low in both spatial and seasonal scale. The spatial distribution of high zooplankton biomass zone was not consistent with the HCZ, but they were crossed or neighboring. The further analysis from GAM showed that the environmental factors can explain more than 70% variability of chlorophyll (log-transformed) off the Changjiang Estuary. Salinity and nutrients were the main factors, while the TSS, zooplankton and temperature had no significant direct correlation with the chlorophyll variability (p>0.05). Moreover, due to the impact of Changjiang Diluted Water, the salinity was significantly correlated to the DIN, phosphate, silicate and TSS (p<0.001), which suggested that the effect of salinity on explaining the chlorophyll variability involved those of both the nutrient and the light. Our results suggested that the bottom-up effects from nutrients were the main control of the phytoplankton standing stock off the Changjiang Estuary. Light condition and zooplankton biomass had a certain relation with the phytoplankton standing stock on the spatial and seasonal distribution, but they were not the key controlling factors.
  • loading
  • Carpenter S R, Kitchell J F, Hodgson J R. Cascading trophic interactions and lake productivity[J]. BioScience, 1985, 35(10): 634-639.
    McQueen D J, Post J R, Mills E L. Trophic relationships in freshwater pelagic ecosystems[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1986, 43(8): 1571-1581.
    Lehman J T. Interacting growth and loss rates: the balance of top-down and bottom-up controls in plankton communities[J]. Limnology and Oceanography, 1991, 36(8): 1546-1554.
    Sommer U. Scarcity of medium-sized phytoplankton in the northern Red Sea explained by strong bottom-up and weak top-down control[J]. Marine Ecology Progress Series, 2000, 197: 19-25.
    Goericke R. Top-down control of phytoplankton biomass and community structure in the monsoonal Arabian Sea[J]. Limnology and Oceanography, 2002, 47(5): 1307-1323.
    Thompson P A, Bonham P I, Swadling K M. Phytoplankton blooms in the Huon Estuary, Tasmania: top-down or bottom-up control ?[J]. Journal of Plankton Research, 2008, 30(7): 735-753.
    韩秀荣. 长江口及邻近海域浮游植物生长的多环境效应因子影响解析研究[D]. 青岛: 中国海洋大学, 2009.
    王保栋. 长江口及邻近海域富营养化状况及其生态效应[D]. 青岛: 中国海洋大学, 2006.
    杨东方, 王凡, 高振会, 等. 长江口理化因子影响初级生产力的探索:Ⅱ. 磷不是长江口浮游植物生长的限制因子[J]. 海洋科学进展, 2006, 24(1): 97-107.
    王江涛, 曹婧. 长江口海域近50a来营养盐的变化及其对浮游植物群落演替的影响[J]. 海洋环境科学, 2012, 31(3): 310-315.
    方涛. 光照和N、P营养盐的共同作用对长江口浮游植物生长的影响[D]. 上海: 华东师范大学, 2008.
    孙百晔. 长江口及邻近海域浮游植物生长的光照效应研究[D]. 青岛: 中国海洋大学, 2008.
    孙军, 刘东艳, 王宗灵, 等. 春季赤潮频发期东海微型浮游动物摄食研究[J]. 应用生态学报, 2003, 14(7): 1073-1080.
    孙军, 宋书群. 东海春季水华期浮游植物生长与微型浮游动物摄食[J]. 生态学报, 2009, 29(12): 6429-6438.
    Hastie T, Tibshirani R. Generalized additive models[J]. Statistical Science, 1986, 1(3): 297-310.
    Lamon III E C, Reckhow K H, Havens K E. Using generalized additive models for prediction of chlorophyll a in Lake Okeechobee, Florida[J]. Lakes & Reservoirs: Research and Management, 1996, 2(1/2): 37-46.
    Raitsos D E, Korres G, Triantafyllou G, et al. Assessing chlorophyll variability in relation to the environmental regime in Pagasitikos Gulf, Greece[J]. Journal of Marine Systems, 2012, 94: S16-S22.
    Tew-Kai E, Marsac F. Patterns of variability of sea surface chlorophyll in the Mozambique Channel: A quantitative approach[J]. Journal of Marine Systems, 2009, 77(1/2): 77-88.
    Chen B Z, Liu H B, Huang B Q. Environmental controlling mechanisms on bacterial abundance in the South China Sea inferred from generalized additive models (GAMs)[J]. Journal of Sea Research, 2012, 72: 69-76.
    Chen B Z, Landry M R, Huang B Q, et al. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean?[J]. Limnology and Oceanography, 2012, 57(2): 519-526.
    郑波, 陈新军, 李纲. GLM和GAM模型研究东黄海鲐资源渔场与环境因子的关系[J]. 水产学报, 2008, 32(3): 379-386.
    朱国平. 基于广义可加模型研究时间和环境因子对南极半岛北部南极磷虾渔场的影响[J]. 水产学报, 2012, 36(12): 1863-1871.
    GB/T 12763.6-2007, 海洋调查规范 第6部分: 海洋生物调查[S]. 北京: 中国标准出版社, 2008.
    GB/T 12763.4-2007, 海洋调查规范 第4部分: 海水化学要素调查[S]. 北京: 中国标准出版社, 2008.
    GB 17378.4-2007, 海洋监测规范 第4部分: 海水分析[S]. 北京: 中国标准出版社, 2008.
    Wood S N. Stable and efficient multiple smoothing parameter estimation for generalized additive models[J]. Journal of the American Statistical Association, 2004, 99(467): 673-686.
    Campbell J W. The lognormal distribution as a model for bio-optical variability in the sea[J]. Journal of Geophysical Research: Oceans, 1995, 100(C7): 13237-13254.
    孙军, 宋书群, 栾青杉. 长江口水域浮游植物生物量及结构特点[M]//俞志明, 沈志良, 陈亚瞿, 等. 长江口水域富营养化. 北京: 科学出版社, 2011: 184-203.
    Banse K. Grazing and zooplankton production as key controls of phytoplankton production in the open ocean[J]. Oceanography, 1994, 7(1): 13-20.
    宁修仁, 史君贤, 蔡昱明, 等. 长江口和杭州湾海域生物生产力锋面及其生态学效应[J]. 海洋学报, 2004, 26(6): 96-106.
    孙军, 宋书群, 栾青杉. 长江口水域浮游植物关键过程及其对富营养化的影响[M]//俞志明, 沈志良, 陈亚瞿, 等. 长江口水域富营养化. 北京: 科学出版社, 2011: 336-349.
    周名江, 朱明远. "我国近海有害赤潮发生的生态学、海洋学机制及预测防治"研究进展[J]. 地球科学进展, 2006, 21(7): 673-679.
    李瑞香, 朱明远, 王宗灵, 等. 东海两种赤潮生物种间竞争的围隔实验[J]. 应用生态学报, 2003, 14(7): 1049-1054.
    孙军, 刘东艳, 陈宗涛, 等. 不同氮磷比率对青岛大扁藻、新月柱鞘藻和米氏凯伦藻生长影响及其生存策略研究[J]. 应用生态学报, 2004, 15(11): 2122-2126.
    吕颂辉, 李英. 我国东海4种赤潮藻的细胞氮磷营养储存能力对比[J]. 过程工程学报, 2006, 6(3): 439-444.
    孙军, 宋书群, 栾青杉. 长江口水域浮游植物群集组成结构与特点[M]//俞志明, 沈志良, 陈亚瞿, 等. 长江口水域富营养化. 北京: 科学出版社, 2011: 144-184.
    李雁宾. 长江口及邻近海域季节性赤潮生消过程控制机理研究. 青岛: 中国海洋大学, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1880) PDF downloads(1537) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return