Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Li Xi, Zeng Xiang, Zhang Zhao, Shao Zongze. Characteristics of different iron oxides reduction by a thermophilic dissimilatory iron reducing bacterium Caloranaerobacter ferrireducens DY22619T from deep sea[J]. Haiyang Xuebao, 2016, 38(8): 83-92. doi: 10.3969/j.issn.0253-4193.2016.08.009
Citation: Li Xi, Zeng Xiang, Zhang Zhao, Shao Zongze. Characteristics of different iron oxides reduction by a thermophilic dissimilatory iron reducing bacterium Caloranaerobacter ferrireducens DY22619T from deep sea[J]. Haiyang Xuebao, 2016, 38(8): 83-92. doi: 10.3969/j.issn.0253-4193.2016.08.009

Characteristics of different iron oxides reduction by a thermophilic dissimilatory iron reducing bacterium Caloranaerobacter ferrireducens DY22619T from deep sea

doi: 10.3969/j.issn.0253-4193.2016.08.009
  • Received Date: 2015-11-10
  • Rev Recd Date: 2016-02-29
  • Dissimilatory iron reduction microbes play an important role in iron geochemical cycle. Deep-sea hydrothermal activity is an important source of the oceanic iron. At present there are little research about iron metabolism microbes in deep-sea hydrothermal areas. In this report, the iron reduction capability of Caloranaerobacter ferrireducens DY22619T from deep sea was characterized. This article compared the iron reduction rate with three different iron oxides as electron acceptor, and analyzed the mineral morphology, element component and crystal face using Transmission Electron Microscope(TEM). The iron reduction rate was the fastest during from exponential to stationary phase and the rate with Amorphous FeOOH and Amorphous Fe(Ⅲ) Oxide was much higher reaching about 2.82 μmol/h and 2.15 μmol/h. TEM results showed the bacterium reduced all the three kinds of iron oxides and formed magnetite particles. The granule size of the magnetite formed with Goethite was the largest, but less in granule number. In addition, the crystal face derived from reducing Amorphous Fe(Ⅲ) Oxide was different from other two oxides. The results indicated the strain has a high potential in iron reducing Fe(Ⅲ) oxides and mineralization in anaerobic respiration. However, the properties of the magnetite and iron reduction rate is influenced by the character of iron oxides. These research indicated the role of dissimilatory iron reduction bacteria of this genus in iron geochemical cycle and biomineralization in deep sea hydrothermal areas.
  • loading
  • Myers C R, Nealson K H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J]. Science, 1988, 240(4857):1319-1321.
    Lovley D R. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction[J]. Microbiology and Molecular Biology Reviews, 1991, 55(2):259-287.
    李陛, 吴文芳, 李金华, 等. 温度和电子传递体AQDS对铁还原细菌Shewanella putrefaciens CN32矿化产物的影响[J]. 地球物理学报, 2011, 54(10):2631-2638. Li Bi, Wu Wenfang, Li Jinhua, et al. Effects of temperature on biomineralization of iron reducing bacteria Shewanella putrefaciens CN32[J]. Chinese Journal of Geophysics, 2011, 54(10):2631-2638.
    欧阳冰洁, 陆现彩, 刘欢, 等. 希瓦氏奥奈达菌MR-1还原针铁矿的实验研究及地球化学意义[J]. 矿物学报, 2013, 33(3):389-396. Ouyang Bingjie, Lu Xiancai, Liu Huan, et al. Reduction of goethite by Shewanella oneidensis MR-1 and its geochemical implication[J]. Acta Mineralogica Sinica, 2013, 33(3):389-396.
    Hekinian R, Hoffert M, Larque P, et al. Hydrothermal Fe and Si oxyhydroxide deposits from south Pacific intraplate volcanoes and East Pacific rise axial and off-axial regions[J]. Economic Geology, 1993, 88(8):2099-2121.
    Slobodkina G B, Kolganova T V, Chernyh N A, et al. Deferribacter autotrophicus sp. nov., an iron(Ⅲ)-reducing bacterium from a deep-sea hydrothermal vent[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(6):1508-1512.
    Miroshnichenko M L, Slobodkin A I, Kostrikina N A, et al. Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(5):1637-1641.
    Wery N, Lesongeur F, Pignet P, et al. Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(2):495-504.
    Lin T J, Breves E A, Dyar M D, et al. Magnetite formation from ferrihydrite by hyperthermophilic archaea from Endeavour Segment, Juan de Fuca Ridge hydrothermal vent chimneys[J]. Geobiology, 2014, 12(3):200-211.
    Zeng Xiang, Zhang Zhao, Li Xi, et al. Caloranaerobacter ferrireducens sp. nov., an anaerobic, thermophilic, iron (Ⅲ)-reducing bacterium isolated from deep-sea hydrothermal sulfide deposits[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(6):1714-1718.
    Lovley D R, Philips E J P. Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1988, 54(6):1472-1480.
    Stookey L L. Ferrozine-a new spectrophotometric reagent for iron[J]. Analytical Chemistry, 1970, 42(7):779-781.
    Lovley D R, Holmes D E, Nevin K P. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction[J]. Advances in Microbial Physiology, 2004, 49:219-286.
    Lehours A C, Rabiet M, Morel-Desrosiers N, et al. Ferric iron reduction by fermentative strain BS2 isolated from an iron-rich anoxic environment (Lake Pavin, France)[J]. Geomicrobiology Journal, 2010, 27(8):714-722.
    Vecchia E D, Suvorova E I, Maillard J, et al. Fe(Ⅲ) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1[J]. Geobiology, 2014, 12(1):48-61.
    Childers S E, Ciufo S, Lovley D R. Geobacter metallireducens accesses insoluble Fe(Ⅲ) oxide by chemotaxis[J]. Nature, 2002, 416(6882):767-769.
    Gorby Y A, Yanina S, McLean J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(30):11358-11363.
    Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045):1098-1101.
    Lovley D R, Coates J D, Blunt-Harris E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590):445-448.
    Nevin K P, Lovley D R. Mechanisms for accessing insoluble Fe(Ⅲ) oxide during dissimilatory Fe(Ⅲ) reduction by Geothrix fermentans[J]. Applied and Environmental Microbiology, 2002, 68(5):2294-2299.
    Nevin K P, Lovley D R. Mechanisms for Fe(Ⅲ) oxide reduction in sedimentary environments[J]. Geomicrobiology Journal, 2002, 19(2):141-159.
    Newman D K, Kolter R. A role for excreted quinones in extracellular electron transfer[J]. Nature, 2000, 405(6782):94-97.
    Turick C E, Tisa L S, Caccavo Jr F. Melanin production and use as a soluble electron shuttle for Fe(Ⅲ) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY[J]. Applied and Environmental Microbiology, 2002, 68(5):2436-2444.
    Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron:anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10):752-764.
    Hernandez M E, Kappler A, Newman D K. Phenazines and other redox-active antibiotics promote microbial mineral reduction[J]. Applied and Environmental Microbiology, 2004, 70(2):921-928.
    Nevin K P, Lovley D R. Potential for nonenzymatic reduction of Fe(Ⅱ) via electron shuttling in subsurface sediments[J]. Environmental Science & Technology, 2000, 34(12):2472-2478.
    张昭. 两株来自深海热液区的嗜热铁还原细菌的分离鉴定及其铁还原机制的研究[D]. 厦门:厦门大学, 2013. Zhang Zhao. Isolation and characterization of two thermophilic iron-reducing bacteria from deep sea hydrothermal vents and their iron-reducing mechanisms[D]. Xiamen:Xiamen University, 2013.
    Salas E C, Berelson W M, Hammond D E, et al. The impact of bacterial strain on the products of dissimilatory iron reduction[J]. Geochimica et Cosmochimica Acta, 2010, 74(2):574-583.
    Roh Y, Moon H S. Iron reduction by a psychrotolerant Fe(Ⅲ)-reducing bacterium isolated from ocean sediment[J]. Geosciences Journal, 2001, 5(3):183-190.
    Roh Y H, Gao Haichun, Vali D, et al. Metal reduction and iron biomineralization by a psychrotolerant Fe(Ⅲ)-reducing bacterium, Shewanella sp. strain PV-4[J]. Applied and Environmental Microbiology, 2006, 72(5):3236-3244.
    Lin T J. Microbe-Mineral relationships and biogenic mineral transformations in actively venting deep-sea hydrothermal sulfide chimneys[D]. Massachusetts:University of Massachusetts-Amherst, 2014.
    Kashefi K, Tor J M, Holmes D E, et al. Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(Ⅲ) serving as the sole electron acceptor[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(3):719-728.
    Brügger K, Chen Lanming, Stark M, et al. The genome of Hyperthermus butylicus:a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108℃[J]. Archaea, 2007, 2(2):127-135.
    Zillig W, Holz I, Janekovic D, et al. Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides[J]. Journal of Bacteriology, 1990, 172(7):3959-3965.
    Slobodkin A, Campbell B, Cary S C, et al. Evidence for the presence of thermophilic Fe(Ⅲ)-reducing microorganisms in deep-sea hydrothermal vents at 13 degrees N (East Pacific Rise)[J]. FEMS Microbiology Ecology, 2001, 36(2/3):235-243.
    Huber H, Thomm M, König H, et al. Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen[J]. Archives of Microbiology, 1982, 132(1):47-50.
    Xiao Xiang, Wang Peng, Zeng Xiang, et al. Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(1):60-65.
    Bale S J, Goodman K, Rochelle P A, et al. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea[J]. International Journal of Systematic Bacteriology, 1997, 47(2):515-521.
    Holmes D E, Bond D R, Lovley D R. Electron transfer by Desulfobulbus propionicus to Fe(Ⅲ) and graphite electrodes[J]. Applied and Environmental Microbiology, 2004, 70(2):1234-1237.
    Pfennig N, Biebl H. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium[J]. Archives of Microbiology, 1976, 110(1):3-12.
    Roden E E, Lovley D R. Dissimilatory Fe(Ⅲ) reduction by the marine microorganism Desulfuromonas acetoxidans[J]. Applied and Environmental Microbiology, 1993, 59(3):734-742.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1360) PDF downloads(508) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return