Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Hou Jingming, Gao Yi, Wang Juncheng, Fan Tingting, Shan Di, Wang Zongchen. Using remote sensing to assess tsunami vulnerability for the coast of Taizhou, Zhejiang Province, China[J]. Haiyang Xuebao, 2016, 38(8): 12-23. doi: 10.3969/j.issn.0253-4193.2016.08.002
Citation: Hou Jingming, Gao Yi, Wang Juncheng, Fan Tingting, Shan Di, Wang Zongchen. Using remote sensing to assess tsunami vulnerability for the coast of Taizhou, Zhejiang Province, China[J]. Haiyang Xuebao, 2016, 38(8): 12-23. doi: 10.3969/j.issn.0253-4193.2016.08.002

Using remote sensing to assess tsunami vulnerability for the coast of Taizhou, Zhejiang Province, China

doi: 10.3969/j.issn.0253-4193.2016.08.002
  • Received Date: 2015-09-25
  • Rev Recd Date: 2016-03-08
  • With its powerful earth observation capability, remote sensing technology shows great potential for disaster assessment. In this paper, multi-source remote sensing data is used to assess tsunami vulnerability from three components of vulnerability: exposure, sensitivity and resilience. Distance from shore is analyzed for exposure; apart from elevation, slope and shape of the coast, social and economic factor is taken into account for sensitivity; resilience is analyzed mainly from the land use factor. The Analytical Hierarchy Process (AHP) is used to construct a weighting scheme for the variables of sensitivity. Finally, five classes of vulnerability (low, slightly low, medium, slightly high and high) are defined and analyzed. The vulnerability map shows that 78.1% of the study area is low vulnerability, 5.9% is slightly low vulnerability, 5.4% is medium, 8.8% is slightly high vulnerability, and 1.8% is high vulnerability. High vulnerability areas are mostly located within 6 km buffer zone with smaller elevation and slope. The vulnerability analysis result can provide strong support for the tsunami disaster prevention and mitigation of local government.
  • loading
  • Birkmann J. Risk and vulnerability indicators at different scales:applicability, usefulness and policy implications[J]. Environmental Hazards, 2007, 7(1):20-31.
    UNEP. After the tsunami:rapid environmental assessment[R]. Berne, Switzerland:UNEP (United Nations Environment Programme), 2005.
    Dall'Osso F, Bovio L, Cavalletti A, et al. A novel approach (the CRATER method) for assessing tsunami vulnerability at the regional scale using ASTER imagery[J]. European Journal of Remote Sensing, 2010, 42(2):55-74.
    Dall'Osso F, Gonella M, Gabbianelli G, et al. A revised (PTVA) model for assessing the vulnerability of buildings to tsunami damage[J]. Nat Hazards Earth Syst Sci, 2009, 9(5):1557-1565.
    Dominey-Howes D, Papathoma M. Validating a tsunami vulnerability assessment model (the PTVA model) using field data from the 2004 Indian Ocean tsunami[J]. Natural Hazards, 2007, 40(1):113-136.
    Papathoma M, Dominey-Howes D, Zong Y, et al. Assessing tsunami vulnerability, an example from Herakleio, Crete[J]. Nat Hazards Earth Syst Sci, 2013, 3(5):377-389.
    Omira R, Baptista M A, Miranda J M, et al. Tsunami vulnerability assessment of Casablanca-Morocco using numerical modelling and GIS tools[J]. Natural Hazards, 2009, 54(1):75-95.
    Theilen-Willige B. Tsunami hazard assessment in the Northern Aegean Sea[J]. Science of Tsunami Hazards, 2008, 27(1):1-16.
    Sinaga T P T, Nugroho A, Lee Y, et al. GIS mapping of tsunami vulnerability:case study of the Jembrana Regency in Bali, Indonesia[J]. KSCE Journal of Civil Engineering, 2011, 15(3):537-543.
    Ajin R S, Mathew J K, Vinod P G. Tsunami vulnerability mapping using remote sensing and GIS techniques:a case study of Kollam District, Kerala, India[J]. Iranian Journal of Earth Sciences, 2014, 6:43-50.
    Wang J F, Li L F. Improving tsunami warning systems with remote sensing and geographical information system input[J]. Risk Analysis, 2008, 28(6):1653-1668.
    Yamazaki F, Matsuoka M. Remote sensing technology in post disaster damage assessment[J]. Journal of Earthquake and Tsunami, 2007, 1(3):193-210.
    Taubenböck H, Post J, Roth A, et al. A conceptual vulnerability and risk framework as outline to identify capabilities of remote sensing[J]. Nat Hazards Earth Syst Sci, 2008, 8(3):409-420.
    Römer H, Willroth P, Kaiser G, et al. Potential of remote sensing techniques for tsunami hazard and vulnerability analysis-a case study from Phang-Nga province, Thailand[J]. Nat Hazards Earth Syst Sci, 2012, 12(6):2103-2126.
    ONUG/DHA. Internationally agreed glossary of basic terms related to disaster management[R]. Geneva, Switzerland:United Nations Department of Humanitarian Affairs, 1992.
    Doerfliger N, Jeannin P Y, Zwahlen F. Water vulnerability assessment in Karst environments:a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method)[J]. Environmental Geology, 1999, 39(2):165-176.
    Turner B L, Kasperson R E, Matson P A, et al. A framework for vulnerability analysis in sustainability science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14):8074-8079.
    Clark W, Jager J, Corell R, et al. Assessing vulnerability to global environmental risks[R]. Airlie House, Warrenton, Virginia:Report of the Workshop on Vulnerability to Global Environmental Change, 2000.
    Villagrán D. Vulnerability:a conceptual and methodological review[R]. Tokyo:United Nations University Institute for Environment and Human Security (UNU-EHS), 2006, 4:68.
    Lekkas E, Andreadakis E, Kostaki I, et al. Critical factors for run-up and impact of the Tohoku earthquake tsunami[J]. International Journal of Geosciences, 2011, 2(3):310-317.
    Saaty T L. A scaling method for priorities in hierarchical structures[J]. Journal of Mathematical Psychology, 1977, 15(3):234-281.
    Saaty T L. Decision making for leaders:the analytical hierarchy process for decisions in a complex world. The analytical hierarchy process series[C]. Pittsburgh:RWS Publication, 1996.
    中国台州政府网. 台州自然地理[EB/OL]. http://www.zjtz.gov.cn/col/col54/index.html, 2015-09-07. Taizhou Government Website. The physical geography of Taizhou[EB/OL]. http://www.zjtz.gov.cn/col/col54/index.html, 2015-09-07.
    温燕林, 赵文舟, 李伟, 等. 日本南海海槽发生罕遇地震情况下我国华东沿海的海啸危险性研究[J]. 地震学报, 2014, 36(4):651-661. Wen Yanlin, Zhao Wenzhou, Li Wei, et al. Research on the potential tsunami hazard in East China Coast under rare earthquake occurred in Nankai Trough, Japan[J]. Acta Seismologica Sinica, 2014, 36(4):651-661.
    毛献忠, 祝倩, Wei Yong. 浙江沿海潜在区域地震海啸风险分析[J]. 海洋学报, 2015, 37(3):37-45. Mao Xianzhong, Zhu Qian, Wei Yong. Risk analysis of potential regional earthquake tsunami on the coast of Zhejiang Province[J]. Haiyang Xuebao, 2015, 37(3):37-45.
    郭彩玲, 王晓峰. 中国东部海域发生海啸的可能性分析[J]. 自然灾害学报, 2007, 16(1):7-11. Guo Cailing, Wang Xiaofeng. Possibility analysis of tsunami taking place in east sea area of China[J]. Journal of Natural Disasters, 2007, 16(1):7-11.
    王锋, 刘昌森, 章振铨. 中国古籍中的地震海啸记录[J]. 中国地震, 2005, 21(3):437-443. Wang Feng, Liu Changsen, Zhang Zhenquan. Earthquake tsunami record in Chinese ancient books[J]. Earthquake Research in China, 2005, 21(3):437-443.
    王培涛, 于福江, 赵联大, 等. 2011年3月11日日本地震海啸越洋传播及对中国影响的数值分析[J]. 地球物理学报, 2012, 55(9):3088-3096. Wang Peitao, Yu Fujiang, Zhao Lianda, et al. Numerical analysis of tsunami propagating generated by the Japan Mw9.0 earthquake on Mar. 11 in 2011 and its impact on China coasts[J]. Chinese J Geophys, 2012, 55(9):3088-3096.
    Iida K. Magnitude, energy and generation mechanisms of tsunamis and a catalogue of earthquakes associated with tsunamis[C]//Proceedings of Tsunami Meeting at the 10th Pacific Science Congress. Honolulu:IUGG Monograph, 1963,24:7-18.
    IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation[C]//A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge and New York:Cambridge University Press, 2012.
    高义, 王辉, 王培涛, 等. 基于人口普查与多源夜间灯光数据的海岸带人口空间化分析[J]. 资源科学, 2013, 35(12):2517-2523. Gao Yi, Wang Hui, Wang Peitao, et al. Population spatial processing for Chinese coastal zones based on census and multiple night light data[J]. Resources Science, 2013, 35(12):2517-2523.
    Li Xi, Xu Huimin, Chen Xiaoling, et al. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China[J]. Remote Sensing, 2013, 5(6):3057-3081.
    Li Xi, Li Deren. Can night-time light images play a role in evaluating the Syrian Crisis?[J]. International Journal of Remote Sensing, 2014, 35(18):6648-6661.
    Burrough P A, McDonnell R A. Principles of Geographical Information Systems[M]. New York:Oxford University Press, 1998:356.
    Van Zuidam R A. Guide to geomorphologic:aerial photographic interpretation and mapping[C]//International Institute for Geo-Information Science and Earth Observation. Enschede, 1983:325.
    Ikawati Y. Tsunami wave is predictable[C]//Canahar P. Earthquake Disaster and Tsunami, Kompas. Jakarta, 2004:550.
    Kaiser G, Burkhard B, Römer H, et al. Mapping tsunami impacts on land cover and related ecosystem service supply in Phang Nga, Thailand[J]. Nat Hazards Earth Syst Sci, 2013, 13(12):3095-3111.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1086) PDF downloads(848) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return