Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zhang Dajuan, Guo Donghui, Wang Guizhong, Li Shaojing. Proteomic study of the effects of acidified seawater on Calanus sinicus[J]. Haiyang Xuebao, 2015, 37(6): 97-105. doi: 10.3969/j.issn.0253-4193.2015.06.010
Citation: Zhang Dajuan, Guo Donghui, Wang Guizhong, Li Shaojing. Proteomic study of the effects of acidified seawater on Calanus sinicus[J]. Haiyang Xuebao, 2015, 37(6): 97-105. doi: 10.3969/j.issn.0253-4193.2015.06.010

Proteomic study of the effects of acidified seawater on Calanus sinicus

doi: 10.3969/j.issn.0253-4193.2015.06.010
  • Received Date: 2014-09-23
  • This study compared proteim profiles of Calanus sinicus cultured under CCO2 0.08% and CCO2 0.20% CO2-acidified seawater for 4 days using a proteomic approach, and identified the differentially expressed proteins. The results are shown that, 1 191, 1 117 and 946 protein spots of C.sinicus in control, CCO2 0.08% and CCO2 0.20% groups were detected in the two-dimensional electrophoresis gels, respectively. The 43 protein spots were selected based on their differential expression between control and CCO2 0.08% group, CCO2 0.20% group, and 23 proteins of which were identified by MALDI-TOF/TOF mass spectrometry. The data demonstrated that these differentially expressed proteins were associated with protein synthesize and proteolysis, energy metabolism, DNA repaired and detoxified of organisms.
  • loading
  • Scheffer M, Carpenter S, Foley J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413(6856): 591-596.
    IPCC. A contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the third assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2001.
    Royal Society. Ocean acidification due to increasing atmospheric carbon dioxide[M]. London: The Royal Society, 2005: 60.
    Clark D, Lamare M, Barker M. Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species[J]. Marine Biology, 2009, 156(6): 1125-1137.
    Zippay M L, Hofmann G E. Effect of pH on gene expression and thermal tolerance of early life history stages of red abalone (Haliotis rufescens)[J]. Journal of Shellfish Research, 2010, 29(2): 429-439.
    Bradassi F, Cumani F, Bressan G, et al. Early reproductive stages in the crustose coralline alga phymatolithon lenormandii are strongly affected by mild ocean acidification[J]. Marine Biology, 2013, 160(8): 2261-2269.
    Wall C B, Fan T Y, Edmunds P J. Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum[J]. Coral Reefs, 2014, 33(1): 119-130.
    Kurihara H. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates[J]. Marine Ecology Progress Series, 2008, 373: 275-284.
    Kurihara H, Ishimatsu A. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations[J]. Marine Pollution Bulletin, 2008, 56(6): 1086-1090.
    Zhang D J, Li S J, Wang G Z, et al. Impacts of CO2-driven seawater acidification on survival, egg production rate and hatching success of four marine copepods[J]. Acta Oceanologica Sinica, 2011, 30(6): 86-94.
    Zhang D J, Li S J, Wang G Z, et al. Biochemical responses of the copepod Centropages tenuiremis to CO2-driven acidified seawater[J]. Water Science & Technology, 2012, 65(1): 30-37.
    张达娟, 李少菁, 王桂忠, 等. 二氧化碳酸化对两种桡足类肌肉和卵母细胞超微结构的影响[J]. 海洋学报, 2012, 34(3): 127-133. Zhang Dajuan, Li Shaojing, Wang Guizhong, et al. Impacts of CO2-driven acidified seawater on the muscle and oocyte ultrastructure of two marine copepods[J]. Haiyang Xuebao, 2012, 34(3): 127-133.
    Wang D Z, Lin L, Chan L L, et al. Comparative studies of four protein preparation methods for proteomic study of the dinoflagellate Alexandrium sp. using two-dimensional electrophoresis[J]. Harmful Algae, 2009, 8(5): 685-691.
    Redpath N T, Foulstone E J, Proud C G. Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway[J]. EMBO Journal, 1996, 15(9): 2291-2297.
    Seibel B A, Walsh P J. Potential impacts of CO2 injection on deep-sea biota[J]. Science, 2001, 294(5541): 319-320.
    Seibel B A, Walsh P J. Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance[J]. The Journal of Experimental Biology, 2003, 206(4): 641-650.
    Fabry V J. Ocean science: marine calcifiers in a high-CO2 ocean[J]. Science, 2008, 320(5879): 1020-1022.
    Hurley J H, Dean A M, Koshland D E, et al. Catalytic mechanism of NADP+-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes[J]. Biochemistry, 1991, 30(35): 8671-8678.
    朱国萍, 黄恩启, 赵禙军. NADP-异柠檬酸脱氢酶的结构与功能[J]. 安徽师范大学学报: 自然科学版, 2007, 30(3): 366-371. Zhu Guoping, Huang Enqi, Zhao Beijun. Structure and function of NADP-Isocitrate dehydrogenase[J]. Journal of Anhui Normal University: Natural Science, 2007, 30(3): 366-371.
    Hauton C, Tyrrell T, Williams J. The subtle effects of sea water acidification on the amphipod Gammarus locusta[J]. Biogeoscience, 2009, 6: 1479-1489.
    Chen Z J, Kastaniotis A J, Miinalainen I J, et al. 17β-Hydroxysteroid dehydrogenase type 8 and carbonyl reductase type 4 assemble as a ketoacyl reductase of human mitochondrial FAS[J]. The FASEB Journal, 2009, 23(11): 3682-3691.
    Todgham A E, Hofmann G E. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification[J]. The Journal of Experimental Biology, 2009, 212(16): 2579-2594.
    Tomkinson A E, Vijayakumar S, Pascal J M, et al. DNA ligases: structure, reaction mechanism, and function[J]. Chemical Reviews, 2006, 106(2): 687-699.
    Bibby R, Widdicombe S, Parry H, et al. Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis[J]. Aquatic Biology, 2008, 2(1): 67-74.
    Burgents J E, Burnett K G, Burnett L E. Effects of Hypoxia and hypercapnic hypoxia on the localization and the elimination of Vibrio campbellii in Litopenaeus vannamei, the pacific white shrimp[J]. Biological Bulletin, 2005, 208(3): 159-168.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1236) PDF downloads(1133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return