Citation: | Liu Hao,Xu Qiutong,Wang Chunsheng, et al. Composition and distribution of methane metabolic archaea in oceanic surface sediments[J]. Haiyang Xuebao,2023, 45(1):80–88 doi: 10.12284/hyxb2023010 |
[1] |
Niu Mingyang, Liang Wenyue, Wang Fengping. Methane biotransformation in the ocean and its effects on climate change: a review[J]. Science China Earth Sciences, 2018, 61(12): 1697−1713. doi: 10.1007/s11430-017-9299-4
|
[2] |
Ferry J G, Lessner D J. Methanogenesis in marine sediments[J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 147−157. doi: 10.1196/annals.1419.007
|
[3] |
Hartmann D L, Klein Tank A M G, Rusticucci M, et al. Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014.
|
[4] |
Lowe D C. Global change: a green source of surprise[J]. Nature, 2006, 439(7073): 148−149. doi: 10.1038/439148a
|
[5] |
Niemann H, Lösekann T, de Beer D, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink[J]. Nature, 2006, 443(7113): 854−858. doi: 10.1038/nature05227
|
[6] |
Giovannell D, d’Errico G, Fiorentino F, et al. Diversity and distribution of prokaryotes within a shallow-water pockmark field[J]. Frontiers in Microbiology, 2016, 7: 941.
|
[7] |
Tu T H, Wu Liwei, Lin Y S, et al. Microbial community composition and functional capacity in a terrestrial ferruginous, sulfate-depleted mud volcano[J]. Frontiers in Microbiology, 2017, 8: 2137. doi: 10.3389/fmicb.2017.02137
|
[8] |
Jing Hongmei, Wang Ruonan, Jiang Qiuyun, et al. Anaerobic methane oxidation coupled to denitrification is an important potential methane sink in deep-sea cold seeps[J]. Science of the Total Environment, 2020, 748: 142459. doi: 10.1016/j.scitotenv.2020.142459
|
[9] |
Inagaki F, Kuypers M M M, Tsunogai U, et al. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system[J]. Proceedings of the National Academy of Sciences, 2006, 103(38): 14164−14169. doi: 10.1073/pnas.0606083103
|
[10] |
Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9): 725−734. doi: 10.1038/ngeo1926
|
[11] |
D’Hondt S, Rutherford S, Spivack A J. Metabolic activity of subsurface life in deep-sea sediments[J]. Science, 2002, 295(5562): 2067−2070. doi: 10.1126/science.1064878
|
[12] |
Chen Jinquan, Wang Fengping, Zheng Yanping, et al. Investigation of the methanogen-related archaeal population structure in shallow sediments of the Pearl River Estuary, Southern China[J]. Journal of Basic Microbiology, 2014, 54(6): 482−490. doi: 10.1002/jobm.201200172
|
[13] |
Niu Mingyang, Fan Xibei, Zhuang Guangchao, et al. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea[J]. FEMS Microbiology Ecology, 2017, 93(9): fix101.
|
[14] |
Yang Shanshan, Lü Yongxin, Liu Xipeng, et al. Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea[J]. Nature Communications, 2020, 11(1): 3941. doi: 10.1038/s41467-020-17860-8
|
[15] |
Chen Ye, Li Siqi, Xu Xiaoqing, et al. Characterization of microbial communities in sediments of the South Yellow Sea[J]. Journal of Oceanology and Limnology, 2021, 39(3): 846−864. doi: 10.1007/s00343-020-0106-6
|
[16] |
Mihajlovski A, Alric M, Brugère J F. A putative new order of methanogenic archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene[J]. Research in Microbiology, 2008, 159(7/8): 516−521.
|
[17] |
Dridi B, Raoult D, Drancourt M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of Archaea: towards the universal identification of living organisms[J]. Acta Pathologica Microbiologica et Immunologica Scandinavica, 2012, 120(2): 85−91. doi: 10.1111/j.1600-0463.2011.02833.x
|
[18] |
Wise M G, McArthur J V, Shimkets L J. Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis[J]. Applied and Environmental Microbiology, 1999, 65(11): 4887−4897. doi: 10.1128/AEM.65.11.4887-4897.1999
|
[19] |
Raghoebarsing A A, Pol A, van de Pas-Schoonen K T, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7086): 918−921. doi: 10.1038/nature04617
|
[20] |
Dhillon A, Lever M, Lloyd K G, et al. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin[J]. Applied and Environmental Microbiology, 2005, 71(8): 4592−4601. doi: 10.1128/AEM.71.8.4592-4601.2005
|
[21] |
范习贝, 梁前勇, 牛明杨, 等. 中国南海北部陆坡沉积物古菌多样性及丰度分析[J]. 微生物学通报, 2017, 44(7): 1589−1601. doi: 10.13344/j.microbiol.china.170159
Fan Xibei, Liang Qianyong, Niu Mingyang, et al. The diversity and richness of archaea in the northern continental slope of South China Sea[J]. Microbiology China, 2017, 44(7): 1589−1601. doi: 10.13344/j.microbiol.china.170159
|
[22] |
Prouty N G, Campbell P L, Close H G, et al. Molecular indicators of methane metabolisms at cold seeps along the United States Atlantic Margin[J]. Chemical Geology, 2020, 543: 119603. doi: 10.1016/j.chemgeo.2020.119603
|
[23] |
Santoro A E, Dupont C L, Richter R A, et al. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: an ammonia-oxidizing archaeon from the open ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 1173−1178. doi: 10.1073/pnas.1416223112
|
[24] |
Hammer Ø, Harper D A, Ryan P D. PAST: paleontological statistics software package for education and data analysis[J]. Palaeontologia Electronica, 2001, 4(1): 1−9.
|
[25] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
|
[26] |
郭文捷. 热带西太平洋深海冷泉−海山极端环境微生物多样性研究[D]. 青岛: 青岛大学, 2017.
Guo Wenjie. Microbial community diversity of the deep sea cold seep and seamount-extreme environments in tropical western Pacific[D]. Qingdao: Qingdao University, 2017.
|
[27] |
Orphan V J, Jahnke L L, Embaye T, et al. Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California[J]. Geobiology, 2008, 6(4): 376−393. doi: 10.1111/j.1472-4669.2008.00166.x
|
[28] |
Vigneron A, L’Haridon S, Godfroy A, et al. Evidence of active methanogen communities in shallow sediments of the Sonora Margin cold seeps[J]. Applied and Environmental Microbiology, 2015, 81(10): 3451−3459. doi: 10.1128/AEM.00147-15
|
[29] |
Postec A, Quéméneur M, Bes M, et al. Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period[J]. Frontiers in Microbiology, 2015, 6: 857.
|
[30] |
Zhou Zhichao, Chen Jing, Cao Huiluo, et al. Analysis of methane-producing and metabolizing archaeal and bacterial communities in sediments of the northern South China Sea and coastal Mai Po Nature Reserve revealed by PCR amplification of mcrA and pmoA genes[J]. Frontiers in Microbiology, 2015, 5: 789.
|
[31] |
李涛, 王鹏, 汪品先. 南海南部陆坡表层沉积物细菌和古菌多样性[J]. 微生物学报, 2008, 48(3): 323−329. doi: 10.3321/j.issn:0001-6209.2008.03.009
Li Tao, Wang Peng, Wang Pinxian. Bacterial and archaeal diversity in surface sediment from the south slope of the South China Sea[J]. Acta Microbiologica Sinica, 2008, 48(3): 323−329. doi: 10.3321/j.issn:0001-6209.2008.03.009
|
[32] |
王风平, 周悦恒, 张新旭, 等. 深海微生物多样性[J]. 生物多样性, 2013, 21(4): 445−455.
Wang Fengping, Zhou Yueheng, Zhang Xinxu, et al. Biodiversity of deep-sea microorganisms[J]. Biodiversity Science, 2013, 21(4): 445−455.
|
[33] |
Claypool G E, Kvenvolden K A. Methane and other hydrocarbon gases in marine sediment[J]. Annual Review of Earth and Planetary Sciences, 1983, 11(1): 299−327. doi: 10.1146/annurev.ea.11.050183.001503
|
[34] |
Danovaro R, Molari M, Corinaldesi C, et al. Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems[J]. Science Advances, 2016, 2(4): e1500961. doi: 10.1126/sciadv.1500961
|
[35] |
Jing Hongmei, Xia Xiaomin, Liu Hongbin, et al. Anthropogenic impact on diazotrophic diversity in the mangrove rhizosphere revealed by nifH pyrosequencing[J]. Frontiers in Microbiology, 2015, 6: 1172.
|
[36] |
Nunoura T, Nishizawa M, Kikuchi T, et al. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments[J]. Environmental Microbiology, 2013, 15(11): 3087−3107.
|
[37] |
Nunoura T, Takaki Y, Kazama H, et al. Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing[J]. Microbes and Environments, 2012, 27(4): 382−390. doi: 10.1264/jsme2.ME12032
|
[38] |
Yanagawa K, Sunamura M, Lever M A, et al. Niche separation of methanotrophic archaea (ANME-1 and -2) in methane-seep sediments of the eastern Japan Sea offshore Joetsu[J]. Geomicrobiology Journal, 2011, 28(2): 118−129. doi: 10.1080/01490451003709334
|
[39] |
Nunoura T, Oida H, Nakaseama M, et al. Archaeal Diversity and distribution along thermal and geochemical gradients in hydrothermal sediments at the Yonaguni Knoll IV hydrothermal field in the southern Okinawa Trough[J]. Applied and Environmental Microbiology, 2010, 76(4): 1198−1211. doi: 10.1128/AEM.00924-09
|
[40] |
Schippers A, Kock D, Höft C, et al. Quantification of microbial communities in subsurface marine sediments of the Black Sea and off Namibia[J]. Frontiers in Microbiology, 2012, 3: 16.
|