Citation: | Sun Huimiao,Shen Weiliang,Chen Caifang, et al. Effects of sulfide stress on blood |
[1] |
Jørgensen B B, Fenchel T. The sulfur cycle of a marine sediment model system[J]. Marine Biology, 1974, 24(3): 189−201. doi: 10.1007/BF00391893
|
[2] |
Grieshaber M K, Völkel S. Animal adaptations for tolerance and exploitation of poisonous sulfide[J]. Annual Review of Physiology, 1998, 60: 33−53. doi: 10.1146/annurev.physiol.60.1.33
|
[3] |
Arp A J, Hansen B M, Julian D. Burrow environment and coelomic fluid characteristics of the echiuran worm Urechis caupo from populations at three sites in northern California[J]. Marine Biology, 1992, 113(4): 613−623. doi: 10.1007/BF00349705
|
[4] |
Jayamanne S C. Toxicity of hydrogen sulphide to juveniles of Macrobrachium rosenbergii[J]. Journal of the National Science Foundation of Sri Lanka, 1992, 20(2): 191−199. doi: 10.4038/jnsfsr.v20i2.8074
|
[5] |
管越强, 裴素蕊, 李泽健. 急性硫化物胁迫对日本沼虾免疫和抗氧化系统的影响[J]. 水生态学杂志, 2011, 32(6): 89−94.
Guan Yueqiang, Pei Surui, Li Zejian. Effects of acute sulfide stress on immune responses and antioxidant system of Macrobrachium nipponense[J]. Journal of Hydroecology, 2011, 32(6): 89−94.
|
[6] |
Konishi M, Watsuji T O, Nakagawa S, et al. Effects of hydrogen sulfide on bacterial communities on the surface of galatheid crab, Shinkaia crosnieri, and in a bacterial mat cultured in rearing tanks[J]. Microbes and Environments, 2013, 28(1): 25−32. doi: 10.1264/jsme2.ME12070
|
[7] |
Duan Yafei, Dong Hongbiao, Wang Yun, et al. Intestine oxidative stress and immune response to sulfide stress in Pacific white shrimp Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2017, 63: 201−207.
|
[8] |
Bora P, Chauhan P, Pardeshi K A, et al. Small molecule generators of biologically reactive sulfur species[J]. RSC Advances, 2018, 8(48): 27359−27374. doi: 10.1039/C8RA03658F
|
[9] |
Coughtrie M W H, Sharp S, Maxwell K, et al. Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases[J]. Chemico-Biological Interactions, 1998, 109(1/3): 3−27.
|
[10] |
Cooper R L, Zorrilla L M. 4.12-The hypothalamic-pituitary-thyroid axis as a target for environmental chemicals[J]. Comprehensive Toxicology, 2018, 4: 230−275.
|
[11] |
Shen Yaoyao, Chen Jiaqi, Shen Weiliang, et al. Molecular characterization of a novel sulfide: quinone oxidoreductase from the razor clam Sinonovacula constricta and its expression response to sulfide stress[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2020, 239: 110367. doi: 10.1016/j.cbpb.2019.110367
|
[12] |
Chen Caifang, Shen Yaoyao, Shen Weiliang, et al. Defense responses of sulfur dioxygenase to sulfide stress in the razor clam Sinonovacula constricta[J]. Genes & Genomics, 2021, 43(5): 513−522.
|
[13] |
沈瑶瑶. 硫化物胁迫下缢蛏2个关键硫代谢基因的响应研究[D]. 宁波: 宁波大学, 2019
Shen Yaoyao. Response of two key sulfur metabolism genes in Sinonovacula constricta under sulfide stress[D]. Ningbo: Ningbo University, 2019.
|
[14] |
Zhao Xuelin, Fu Jianping, Jiang Liting, et al. Transcriptome-based identification of the optimal reference genes as internal controls for quantitative RT-PCR in razor clam (Sinonovacula constricta)[J]. Genes & Genomics, 2018, 40(6): 603−613.
|
[15] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the
|
[16] |
Kauffman F C. Sulfonation in pharmacology and toxicology[J]. Drug Metabolism Reviews, 2004, 36(3/4): 823−843.
|
[17] |
Liu T A, Liu M C, Yang Y S. Immunohistochemical analysis of a novel dehydroepiandrosterone sulfotransferase-like protein in Drosophila neural circuits[J]. Biochemical and Biophysical Research Communications, 2008, 367(1): 14−20. doi: 10.1016/j.bbrc.2007.12.082
|
[18] |
Glatt H, Engelke C E H, Pabel U, et al. Sulfotransferases: genetics and role in toxicology[J]. Toxicology Letters, 2000, 112−113: 341−348. doi: 10.1016/S0378-4274(99)00214-3
|
[19] |
Uno Y, Uehara S, Inoue T, et al. Molecular characterization of functional UDP-glucuronosyltransferases 1A and 2B in common marmosets[J]. Biochemical Pharmacology, 2020, 172: 113748. doi: 10.1016/j.bcp.2019.113748
|
[20] |
Petrotchenko E V, Pedersen L C, Borchers C H, et al. The dimerization motif of cytosolic sulfotransferases[J]. FEBS Letters, 2001, 490(1/2): 39−43.
|
[21] |
Kiehlbauch C C, Lam Y F, Ringer D P. Homodimeric and heterodimeric aryl sulfotransferases catalyze the sulfuric acid esterification of N-hydroxy-2-acetylaminofluorene[J]. Journal of Biological Chemistry, 1995, 270(32): 18941−18947. doi: 10.1074/jbc.270.32.18941
|
[22] |
Weitzner B, Meehan T, Xu Qifang, et al. An unusually small dimer interface is observed in all available crystal structures of cytosolic sulfotransferases[J]. Proteins: Structure, Function, and Bioinformatics, 2009, 75(2): 289−295. doi: 10.1002/prot.22347
|
[23] |
Tibbs Z E, Falany C N. An engineered heterodimeric model to investigate SULT1B1 dependence on intersubunit communication[J]. Biochemical Pharmacology, 2016, 115: 123−133. doi: 10.1016/j.bcp.2016.06.011
|
[24] |
陈修报, 郑浩然, 王洋, 等. 基于原代培养背角无齿蚌鳃细胞的镉毒性效应评价[J]. 环境科学学报, 2020, 40(7): 2665−2670. doi: 10.13671/j.hjkxxb.2020.0037
Chen Xiubao, Zheng Haoran, Wang Yang, et al. Cytotoxicity assessment of cadmium on primary gill cell culture from Anodonta woodiana[J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2665−2670. doi: 10.13671/j.hjkxxb.2020.0037
|
[25] |
Bartholomew T C, Powell G M, Dodgson K S, et al. Oxidation of sodium sulphide by rat liver, lungs and kidney[J]. Biochemical Pharmacology, 1980, 29(18): 2431−2437. doi: 10.1016/0006-2952(80)90346-9
|
[26] |
Furne J, Springfield J, Koenig T, et al. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa[J]. Biochemical Pharmacology, 2001, 62(2): 255−259. doi: 10.1016/S0006-2952(01)00657-8
|
[27] |
Meerman J H N, Ringer D P, Coughtrie M W H, et al. Sulfation of carcinogenic aromatic hydroxylamines and hydroxamic acids by rat and human sulfotransferases: substrate specificity, developmental aspects and sex differences[J]. Chemico-Biological Interactions, 1994, 92(1/3): 321−328.
|
[28] |
郑清梅, 刘兴隆, 郭江山, 等. 粤东海产经济贝类重金属含量与暴露风险评价[J]. 农业资源与环境学报, 2019, 36(1): 105−114. doi: 10.13254/j.jare.2018.0085
Zheng Qingmei, Liu Xinglong, Guo Jiangshan, et al. Analysis of heavy metal concentrations in marine economic shellfish from eastern Guangdong Province and its health risk[J]. Journal of Agricultural Resources and Environment, 2019, 36(1): 105−114. doi: 10.13254/j.jare.2018.0085
|
[29] |
邴晓菲, 吴海燕, 王群, 等. 麻痹性贝类毒素在栉孔扇贝体内的代谢轮廓[J]. 中国水产科学, 2017, 24(3): 623−632. doi: 10.3724/SP.J.1118.2017.16331
Bing Xiaofei, Wu Haiyan, Wang Qun, et al. Metabolic profile of paralytic shellfish toxin in scallop Chlamys farreri[J]. Journal of Fishery Sciences of China, 2017, 24(3): 623−632. doi: 10.3724/SP.J.1118.2017.16331
|
[30] |
Kester M H A, Bulduk S, van Toor H, et al. Potent inhibition of estrogen sulfotransferase by hydroxylated metabolites of polyhalogenated aromatic hydrocarbons reveals alternative mechanism for estrogenic activity of endocrine disrupters[J]. The Journal of Clinical Endocrinology & Metabolism, 2002, 87(3): 1142−1150.
|
[31] |
郭一帆, 陈佩杰, 肖卫华. 甲状腺激素对骨骼肌功能的调控及其机制[J]. 中国运动医学杂志, 2020, 39(8): 649−652. doi: 10.3969/j.issn.1000-6710.2020.08.010
Guo Yifan, Chen Peijie, Xiao Weihua. Thyroid hormone regulation and mechanism of skeletal muscle function[J]. Chinese Journal of Sports Medicine, 2020, 39(8): 649−652. doi: 10.3969/j.issn.1000-6710.2020.08.010
|
[32] |
王丹丹. 甲状腺激素受体相关蛋白3的分子生物学功能研究[D]. 合肥: 安徽医科大学, 2021.
Wang Dandan. Molecular biology function of thyroid hormone receptor associated protein 3[D]. Hefei: Anhui Medical University, 2021.
|
[33] |
Yen P M. Physiological and molecular basis of thyroid hormone action[J]. Physiological Reviews, 2001, 81(3): 1097−1142. doi: 10.1152/physrev.2001.81.3.1097
|
[34] |
Lam S H, Sin Y M, Gong Z, et al. Effects of thyroid hormone on the development of immune system in zebrafish[J]. General and Comparative Endocrinology, 2005, 142(3): 325−335. doi: 10.1016/j.ygcen.2005.02.004
|
[35] |
Sahoo P K. Immunostimulating effect of triiodothyronine: dietary administration of triiodothyronine in rohu (Labeo rohita) enhances immunity and resistance to Aeromonas hydrophila infection[J]. Journal of Applied Ichthyology, 2003, 19(2): 118−122. doi: 10.1046/j.1439-0426.2003.00349.x
|
[36] |
陈勇, 华雪铭, 周洪琪, 等. 壳聚糖和益生菌对异育银鲫非特异免疫功能及血清甲状腺激素、皮质醇水平的影响[J]. 水产学报, 2010, 34(5): 711−718. doi: 10.3724/SP.J.1231.2010.06737
Chen Yong, Hua Xueming, Zhou Hongqi, et al. Effcets of chitosan and probiotics on non-specific immune function and the levels of serum thyroid hormone and cortisol in allogynogenetic silver crucian carp (Carassius auratus gibelio)[J]. Journal of Fisheries of China, 2010, 34(5): 711−718. doi: 10.3724/SP.J.1231.2010.06737
|
[37] |
边原, 李刚, 杨勇, 等. 甲状腺激素在免疫应答方面的研究进展[J]. 实用药物与临床, 2015, 18(2): 219−222.
Bian Yuan, Li Gang, Yang Yong, et al. Research progress of thyroid hormone upon immune response[J]. Practical Pharmacy and Clinical Remedies, 2015, 18(2): 219−222.
|
表S1 物种拉丁文学名及其NCBI登录号对照表.doc |