留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国东海及毗邻区239+240Pu的来源与沉积过程研究

黄亚楠

黄亚楠. 中国东海及毗邻区239+240Pu的来源与沉积过程研究[J]. 海洋学报,2022,44(x):1–11 doi: 10.12284/hyxb2022123
引用本文: 黄亚楠. 中国东海及毗邻区239+240Pu的来源与沉积过程研究[J]. 海洋学报,2022,44(x):1–11 doi: 10.12284/hyxb2022123
Huang Ya-nan. Source and sedimentary process of 239+240Pu in the East China Sea and adjacent water[J]. Haiyang Xuebao,2022, 44(x):1–11 doi: 10.12284/hyxb2022123
Citation: Huang Ya-nan. Source and sedimentary process of 239+240Pu in the East China Sea and adjacent water[J]. Haiyang Xuebao,2022, 44(x):1–11 doi: 10.12284/hyxb2022123

中国东海及毗邻区239+240Pu的来源与沉积过程研究

doi: 10.12284/hyxb2022123
基金项目: 广东省青年优秀人才国际培养计划博士后项目(20210616)
详细信息
    通讯作者:

    黄亚楠(1986-),男,河南正阳人,助理研究员,从事同位素地球化学与年代学研究。E-mail: huangyn69@mail.sysu.edu.cn

Source and sedimentary process of 239+240Pu in the East China Sea and adjacent water

  • 摘要: 本文对中国东海及毗邻海域中239+240Pu比活度、240Pu/239Pu原子比值和239+240Pu累积通量或沉积通量数据进行整理,首次从大气沉降的239+240Pu、海水中的239+240Pu、生物体中的239+240Pu、沉积物捕获器中的239+240Pu以及沉积物中的239+240Pu 5个方面阐述了东海及毗邻海域中239+240Pu的地球化学行为。研究结果表明,全球大气沉降和太平洋核试验场输入的239+240Pu是东海沉积物中239+240Pu的两个主要来源;在长江径流、浙闽沿岸流、台湾暖流、黑潮与上升流等水团的混合作用以及清除作用的影响下,东海近岸海水中239+240Pu浓度在时间上呈现被清除而减少的趋势,相应近岸浅水区沉积物中239+240Pu的埋藏深度高于远岸深水海域。在黑潮入侵和上升流的作用下冲绳海槽区尤其是台湾岛东北部,沉积物中的239+240Pu比活度与沉积通量显著增大。同时,利用东海表层沉积物中239+240Pu比活度和240Pu/239Pu原子比值的相关关系证实了台湾东北部黑潮底层分支流的存在,并指示出台湾暖流与黑潮底层分支流可能交汇的海域位置。
  • 图  1  中国东海及毗邻区239+240Pu样品的采集站位(海流根据文献[3]改绘)

    Fig.  1  The sites of 239+240Pu samples in the East China Sea and adjacent water (Modified from reference [3])

    图  2  全球预测地表空气与日本城市中239+240Pu的浓度[22]

    Fig.  2  The concentrations of 239+240Pu in surface air form globally predicted and Japanese cities[22]

    图  3  东海及毗邻区表层海水中239+240Pu与240Pu/239Pu随时间的变化

    Fig.  3  Changes of 239+240Pu and 240Pu/239Pu in surface water of the East China Sea and adjacent water over time

    图  4  水柱中239+240Pu浓度的分布特征[7, 12]

    Fig.  4  Distribution of 239+240Pu concentration in different water columns

    图  5  长鳍金枪鱼组织中239Pu比活度的变化[28]

    Fig.  5  Changes of the 239Pu specific activity in albacore tissues[28]

    图  6  比较不同深度海水中239+240Pu比活度和通量时间序列[9, 29]

    Fig.  6  Compare the specific activity and flux time series of 239+240Pu in seawater at different depths[9, 29]

    图  7  中国东海及毗邻区表层沉积物中239+240Pu与240Pu/239Pu的相关关系

    Fig.  7  The relationship between 239+240Pu and 240Pu/239Pu in surface sediments of the East China Sea and adjacent water

    图  8  东海及毗邻区沉积物柱样中239+240Pu的分布特征[15-16, 20]

    Fig.  8  Vertical Distributions of 239+240Pu in sediment cores of the East China Sea and adjacent water[15-16, 20]

    表  1  中国东海及毗邻区239+240Pu样品的数据信息

    Tab.  1  Data information about 239+240Pu in the East China Sea and adjacent water

    序号239+240Pu样品类型个数测定方法 标样验证采样时间参考资料
    1海水(表层)10*αn.a.1981年[6]
    2沉积物(表层)+海水(表层)31αn.a.1971–1996年MARIS
    3海水(柱样)+沉积物(柱样)10αn.a.1987年前后[7-8]
    4沉积物(柱样)22αIAEA-SD-N-11998年之前[2]
    5悬浮颗粒物+沉积物(柱样)5αn.a.1991年11月[9]
    6沉积物(柱样)34αIAEA-SD-N-11996–1999年[10]
    7生物体(中华哲水蚤)1αn.a.1993–1996年[11]
    8海水(表层)22αn.a.1993–1996年[1]
    9海水(柱样)3αn.a.1993年10月[12]
    10海水(表层)16αn.a.1993–1994年[13]
    11沉积物(柱样)6ICP-MSIAEA-133A,327,3752000–2003年[14]
    12沉积物(柱样)6ICP-MSIAEA-3681992–1995年[15]
    13沉积物(柱样)1AMScolAMS2006年4月[16]
    14沉积物(表层样+柱样)21SF-ICP-MSIAEA-3682006年4月[17]
    15沉积物(表层样+柱样)29ICP-MS X-IIIAEA-3762013年8月[18]
    16海水(表层)7ICP-MSIAEA-384,395,4432011,2014–2015年[19]
    17沉积物(表层样+柱样)48SF-ICP-MSIAEA-3682013–2015年[20]
    18沉积物(表层样)8SF-ICP-MSIAEA-3682019年之前[21]
    注:*表示每个站位有2个平行样取平均值;n.a.表示从原文中无法获得;()内数字表示具体的样品类型;MARIS表示Marine Radioactivity Information System(海洋放射性核素信息系统),https://maris.iaea.org/。
    下载: 导出CSV
  • [1] Lee S H, Gastaud J, Povinec P P, et al. Distribution of plutonium and americium in the marginal seas of the northwest Pacific Ocean[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2003, 50(17/21): 2727−2750.
    [2] Huh C A, Su C C. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239+240Pu[J]. Marine Geology, 1999, 160(1/2): 183−196.
    [3] 王建丰, 司广成, 于非. 台湾暖流变化特征及机制研究进展[J]. 海洋科学, 2020, 44(5): 141−148.

    Wang Jianfeng, Si Guangcheng, Yu Fei. Progress in studies of the characteristics and mechanisms of variations in the Taiwan Warm current[J]. Marine Sciences, 2020, 44(5): 141−148.
    [4] UNSCEAR. Sources, Effects of Ionizing Radiation[M]//Unscear. Report to the General Assembly with Annex B. New York: United Nations, 2000. (查阅所有网上资料, 未找到本条文献信息, 请联系作者确认)
    [5] 黄亚楠, 潘少明. 中国边缘海柱样沉积物中239+240Pu的分布与时标价值[J]. 中国环境科学, 2020, 40(3): 1235−1245. doi: 10.3969/j.issn.1000-6923.2020.03.035

    Huang Yanan, Pan Shaoming. The dating and distribution of 239+240Pu in the sediment cores of the marginal sea of China[J]. China Environmental Science, 2020, 40(3): 1235−1245. doi: 10.3969/j.issn.1000-6923.2020.03.035
    [6] 李培泉, 颜启民, 于银亭. 冲绳海槽及东海表层海水中超铀元素钚的测定[J]. 海洋科学, 1988(3): 43−46.

    Li Peiquan, Yan Qimin, Yu Yinting. The determination of plutonium in surface seawater of Okinawa trough and east China sea[J]. Marine Sciences, 1988(3): 43−46.
    [7] Nagaya Y, Nakamura K. 239, 240Pu and 137Cs in the East China and the Yellow Seas[J]. Journal of Oceanography, 1992, 48(1): 23−35. doi: 10.1007/BF02234030
    [8] Yamada M, Zheng Jian. Determination of 240Pu/239Pu atom ratio in seawaters from the East China Sea[J]. Radiation Protection Dosimetry, 2011, 146(1/3): 311−313.
    [9] Yamada M, Aono T. Large particle flux of 239+240Pu on the continental margin of the East China Sea[J]. Science of the Total Environment, 2002, 287(1/2): 97−105.
    [10] Su C C, Huh C A. 210Pb, 137Cs and 239, 240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides[J]. Marine Geology, 2002, 183(1/4): 163−178.
    [11] Hong G H, Kim Y I, Lee S H, et al. 239+240Pu and 137Cs concentrations for zooplankton and nekton in the Northwest Pacific and Antarctic Oceans (1993-1996)[J]. Marine Pollution Bulletin, 2002, 44(7): 660−665. doi: 10.1016/S0025-326X(01)00322-8
    [12] Yamada M, Aono T. Vertical profiles of 239+240Pu in seawater from the East China Sea[J]. Journal of Radioanalytical and Nuclear Chemistry, 2003, 256(3): 399−402. doi: 10.1023/A:1024579111492
    [13] Hong G H, Chung C S, Lee S H, et al. Artificial radionuclides in the Yellow Sea: Inputs and redistribution[J]. Radioactivity in the Environment, 2006, 8: 96−133.
    [14] Lee S Y, Huh C A, Su C C, et al. Sedimentation in the Southern Okinawa Trough: enhanced particle scavenging and teleconnection between the Equatorial Pacific and western Pacific margins[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2004, 51(11): 1769−1780. doi: 10.1016/j.dsr.2004.07.008
    [15] Wang Zhongliang, Yamada M. Plutonium activities and 240Pu/239Pu atom ratios in sediment cores from the East China Sea and Okinawa Trough: sources and inventories[J]. Earth and Planetary Science Letters, 2005, 233(3/4): 441−453.
    [16] Tims S G, Pan Shaoming, Zhang R, et al. Plutonium AMS measurements in Yangtze River estuary sediment[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7/8): 1155−1158.
    [17] Liu Zhiyong, Zheng Jian, Pan Shaoming, et al. Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification[J]. Environmental Science & Technology, 2011, 45(5): 1805−1811.
    [18] Wang Jinlong, Baskaran M, Hou Xiaolin, et al. Historical changes in 239Pu and 240Pu sources in sedimentary records in the East China Sea: implications for provenance and transportation[J]. Earth and Planetary Science Letters, 2017, 466: 32−42. doi: 10.1016/j.jpgl.2017.03.005
    [19] Wu Junwen. Sources and scavenging of plutonium in the East China Sea[J]. Marine Pollution Bulletin, 2018, 135: 808−818. doi: 10.1016/j.marpolbul.2018.08.014
    [20] Zhang Rui, Wang Ruirui, Liu Zhiyong, et al. Distribution and transport of plutonium in the sediments of the Yangtze River estuary and the adjacent East China Sea[J]. Applied Geochemistry, 2020, 115: 104532. doi: 10.1016/j.apgeochem.2020.104532
    [21] Liu Zhiyong, Hu Jun, Yamada M, et al. Uranium and plutonium isotopes and their environmental implications in surface sediments from the Yangtze River catchment and estuary[J]. Catena, 2020, 193: 104605. doi: 10.1016/j.catena.2020.104605
    [22] Thakur P, Khaing H, Salminen-Paatero S. Plutonium in the atmosphere: a global perspective[J]. Journal of Environmental Radioactivity, 2017, 175-176: 39−51. doi: 10.1016/j.jenvrad.2017.04.008
    [23] 张克新, 潘少明, 徐仪红, 等. 长江口放射性核素Pu的大气湿沉降初步研究[J]. 地理科学, 2016, 36(1): 157−160. doi: 10.13249/j.cnki.sgs.2016.01.020

    Zhang Kexin, Pan Shaoming, Xu Yihong, et al. Atmospheric wet deposition of radionuclide Pu in the Changjiang River estuary region[J]. Scientia Geographica Sinica, 2016, 36(1): 157−160. doi: 10.13249/j.cnki.sgs.2016.01.020
    [24] Yamada M, Zheng Jian. 240Pu/239Pu atom ratios in water columns from the North Pacific Ocean and Bering Sea: transport of Pacific Proving Grounds-derived Pu by ocean currents[J]. Science of the Total Environment, 2020, 718: 137362. doi: 10.1016/j.scitotenv.2020.137362
    [25] Wu Junwen, Dai Minhan, Xu Yi, et al. Sources and accumulation of plutonium in a large Western Pacific marginal sea: the South China Sea[J]. Science of the Total Environment, 2018, 610-611: 200−211. doi: 10.1016/j.scitotenv.2017.07.226
    [26] Imai T, Sakanoue M. Content of plutonium, thorium and protactinium in sea water and recent coral in the north pacific[J]. Journal of the Oceanographical Society of Japan, 1973, 29(2): 76−82.
    [27] Buesseler K O. The isotopic signature of fallout plutonium in the North Pacific[J]. Journal of Environmental Radioactivity, 1997, 36(1): 69−83. doi: 10.1016/S0265-931X(96)00071-9
    [28] Folsom T R. Several measurements of global radioactive fallout-speculation of the characteristics of the North Pacific that control the rate of dispersion of certain surface pollutants[J]. Isotope Ocean Chemistry, 1990: 30−72.
    [29] Yamada M, Aono T. 238U, Th isotopes, 210Pb and 239+240Pu in settling particles on the continental margin of the East China Sea: fluxes and particle transport processes[J]. Marine Geology, 2006, 227(1/2): 1−12.
    [30] 黄亚楠, 潘少明, 刘志勇. 中国边缘海沉积物中239+240Pu 的来源与存量模型[J]. 地理科学, 2018, 38(11): 1892−1903.

    Huang Yanan, Pan Shaoming, Liu Zhiyong. The source and inventory model of in the sediment cores of the Marginal Sea of China[J]. Scientia Geographica Sinica, 2018, 38(11): 1892−1903.
    [31] Yang Dezhou, Yin B aoshu, Liu Zhiliang, et al. Numerical study of the ocean circulation on the East China sea shelf and a kuroshio bottom branch northeast of Taiwan in Summer[J]. Journal of Geophysical Research Atmospheres, 2011, 116(C5): C05015.
    [32] 李安春, 张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼, 2020, 51(4): 705−727. doi: 10.11693/hyhz20200500145

    Li Anchun, Zhang Kaidi. Research progress of mud wedge in the inner continental shelf of the east China sea[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 705−727. doi: 10.11693/hyhz20200500145
    [33] Pittauer D, Roos P, Qiao Jixin, et al. Pacific Proving Grounds radioisotope imprint in the Philippine Sea Sediments[J]. Journal of Environmental Radioactivity, 2018, 186: 131−141. doi: 10.1016/j.jenvrad.2017.06.021
    [34] Huang Yanan, Sun Xiaoming, Zhang Wei, et al. Spatial distribution and migration of 239+240Pu in Chinese soils[J]. Science of the Total Environment, 2022, 824: 153724. doi: 10.1016/j.scitotenv.2022.153724
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 网络出版日期:  2022-06-23

目录

    /

    返回文章
    返回