Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Yang Chao,Zhu Longhai,Zhang Xiaodong. Four-Decade Coastal Evolution of Jiehe Beach in Northeastern Laizhou Bay: An Analysis Using Extensive Satellite Imagery[J]. Haiyang Xuebao,2024, 46(x):1–13
Citation: Yang Chao,Zhu Longhai,Zhang Xiaodong. Four-Decade Coastal Evolution of Jiehe Beach in Northeastern Laizhou Bay: An Analysis Using Extensive Satellite Imagery[J]. Haiyang Xuebao,2024, 46(x):1–13

Four-Decade Coastal Evolution of Jiehe Beach in Northeastern Laizhou Bay: An Analysis Using Extensive Satellite Imagery

  • Received Date: 2024-07-29
  • Rev Recd Date: 2024-10-28
  • Available Online: 2024-11-15
  • In recent decades, the beaches on both sides of the Jiehe River (hereinafter referred to as Jiehe Beach) in the northeastern part of Laizhou Bay have suffered severe erosion against the backdrop of reduced riverine sediment input to the sea. Additionally, the construction of coastal engineering projects such as Yulong Island (a large artificial offshore island) has made the evolution of the Jiehe Beach shoreline exceptionally complex. This paper utilizes 1,186 satellite images from 1984 to 2024, employing a transect-focused method and sub-pixel shoreline recognition technology to study the evolution of the Jiehe Beach shoreline and assess the impacts of river sediment discharge and coastal engineering. The results show that the early evolution (1984−2004) of Jiehe Beach was primarily controlled by the closure and opening of the Jiehe River estuary, the alongshore movement of sand spits, and the onshore movement of sandbars, with overall erosion occurring. The later evolution (2004−2024) of Jiehe Beach was mainly influenced by the construction of coastal engineering projects such as Yulong Island, with overall accretion occurring. In today's era of intensifying coastal development, the rational layout of coastal engineering is expected to mitigate beach erosion.
  • loading
  • [1]
    Turner I L, Harley M D, Almar R, et al. Satellite optical imagery in Coastal Engineering[J]. Coastal Engineering, 2021, 167: 103919. doi: 10.1016/j.coastaleng.2021.103919
    [2]
    Vitousek S, Vos K, Splinter K D, et al. A model integrating satellite-derived shoreline observations for predicting fine-scale shoreline response to waves and sea-level rise across large coastal regions[J]. Journal of Geophysical Research: Earth Surface, 2023, 128(7): e2022JF006936.
    [3]
    Zhang Xiaodong, Wu Chuang, Hu Rijun, et al. Can satellite‐derived beach images resolve the responses to human activities?[J]. Journal of Geophysical Research: Earth Surface, 2024, 129(2): e2023JF007339. doi: 10.1029/2023JF007339
    [4]
    Luijendijk A, Hagenaars G, Ranasinghe R, et al. The state of the world’s beaches[J]. Scientific Reports, 2018, 8(1): 6641. doi: 10.1038/s41598-018-24630-6
    [5]
    Murray N J, Phinn S R, Dewitt M, et al. The global distribution and trajectory of tidal flats[J]. Nature, 2019, 565(7738): 222−225.
    [6]
    Vousdoukas M I, Ranasinghe R, Mentaschi L, et al. Sandy coastlines under threat of erosion[J]. Nature Climate Change, 2020, 10(3): 260−263. doi: 10.1038/s41558-020-0697-0
    [7]
    Cai Feng, Cao Chao, Qi Hongshuai, et al. Rapid migration of mainland China's coastal erosion vulnerability due to anthropogenic changes[J]. Journal of Environmental Management, 2022, 319: 115632. doi: 10.1016/j.jenvman.2022.115632
    [8]
    Moussaid J, Fora A A, Zourarah B, et al. Using automatic computation to analyze the rate of shoreline change on the Kenitra coast, Morocco[J]. Ocean Engineering, 2015, 102: 71−77. doi: 10.1016/j.oceaneng.2015.04.044
    [9]
    Valderrama-Landeros L, Flores-De-Santiago F. Assessing coastal erosion and accretion trends along two contrasting subtropical rivers based on remote sensing data[J]. Ocean & Coastal Management, 2019, 169: 58−67.
    [10]
    Zhang Xiaodong, Tan Xiawei, Hu Rijun, et al. Using a transect-focused approach to interpret satellite images and analyze shoreline evolution in Haiyang Beach, China[J]. Marine Geology, 2021, 438: 106526. doi: 10.1016/j.margeo.2021.106526
    [11]
    Zhang Xiaodong, Wu Chuang, Zhang Yongchang, et al. Using free satellite imagery to study the long-term evolution of intertidal bar systems[J]. Coastal Engineering, 2022, 174: 104123. doi: 10.1016/j.coastaleng.2022.104123
    [12]
    Cai Feng, Su Xianze, Liu Jianhui, et al. Coastal erosion in China under the condition of global climate change and measures for its prevention[J]. Progress in Natural Science, 2009, 19(4): 415−426.
    [13]
    Rangel-Buitrago N, Williams A T, Anfuso G. Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia. A chronicle of pitfalls[J]. Ocean & Coastal Management, 2018, 156: 58−75.
    [14]
    Tak W J, Jun K W, Kim S D, et al. Using drone and LiDAR to assess coastal erosion and shoreline change due to the construction of coastal structures[J]. Journal of Coastal Research, 2020, 95(sp1): 674−678. doi: 10.2112/SI95-131.1
    [15]
    Sujivakand J, Samarasekara R S M, Siriwardana H P A M, et al. Unmanned aerial vehicles (UAVs) for coastal protection assessment: a study of detached breakwater and groins at Marawila Beach, Sri Lanka[J]. Regional Studies in Marine Science, 2024, 69: 103282.
    [16]
    黎奕宏. 我国三类典型海岸工程对相邻海滩的影响研究[D]. 厦门: 国家海洋局第三海洋研究所, 2018.

    Li Yihong. Study on the influence of three types of typical coastal structures to the adjacent beach in China[D]. Xiamen: Third Institute of Oceanography, Ministry of Natural Resources, 2018.
    [17]
    何岩雨, 朱君, 戚洪帅, 等. 人工岛影响下的海滩修复对策研究——以海口西海岸为例[J]. 应用海洋学学报, 2021, 40(1): 2−11.

    He Yanyu, Zhu Jun, Qi Hongshuai, et al. Beach restoration strategy influenced by artificial island: a case study on the west coast of Haikou[J]. Journal of Applied Oceanography, 2021, 40(1): 2−11.
    [18]
    张达恒, 时连强, 龚照辉, 等. 冬季波浪与人工岛联合作用下日月湾海滩冲淤演变特征[J]. 热带海洋学报, 2022, 41(4): 71−81. doi: 10.11978/2021150

    Zhang Daheng, Shi Lianqiang, Gong Zhaohui, et al. Evolution characteristics of beach erosion and accretion at the Riyue Bay under the combined impacts of winter waves and artificial island[J]. Journal of Tropical Oceanography, 2022, 41(4): 71−81. doi: 10.11978/2021150
    [19]
    戚洪帅, 冯威, 刘根, 等. 人工岛影响下养护海滩演变特征研究——以海口湾为例[J]. 海洋学报, 2024, 46(2): 79−92.

    Qi Hongshuai, Feng Wei, Liu Gen, et al. Study on the evolution of nourished beaches under the influence of artificial islands: taking Haikou Bay as an example[J]. Haiyang Xuebao, 2024, 46(2): 79−92.
    [20]
    Liu Gen, Qi Hongshuai, Cai Feng, et al. Initial morphological responses of coastal beaches to a mega offshore artificial island[J]. Earth Surface Processes and Landforms, 2022, 47(6): 1355−1370. doi: 10.1002/esp.5320
    [21]
    Hu Rijun, Fan Yingjie, Zhang Xiaodong. Satellite-derived shoreline changes of an urban beach and their relationship to coastal engineering[J]. Remote Sensing, 2024, 16(13): 2469. doi: 10.3390/rs16132469
    [22]
    Li Songzhe, Lv Biao, Yang Yunping, et al. Effects of offshore artificial islands on beach stability of sandy shores: case study of Hongtang Bay, Hainan Province[J]. Frontiers of Earth Science, 2022, 16(4): 876−889.
    [23]
    Qu Kaicheng, Chen Kefeng, Wang Nairui, et al. Geomorphological processes following the construction of an offshore artificial island in the radial sand ridges of the South Yellow Sea[J]. Coastal Engineering, 2024, 192: 104545. doi: 10.1016/j.coastaleng.2024.104545
    [24]
    Pradeep J, Shaji E, Chandran C S S, et al. Assessment of coastal variations due to climate change using remote sensing and machine learning techniques: a case study from west coast of India[J]. Estuarine, Coastal and Shelf Science, 2022, 275: 107968. doi: 10.1016/j.ecss.2022.107968
    [25]
    Fogarin S, Zanetti M, Dal Barco M K, et al. Combining remote sensing analysis with machine learning to evaluate short-term coastal evolution trend in the shoreline of Venice[J]. Science of the Total Environment, 2023, 859: 160293. doi: 10.1016/j.scitotenv.2022.160293
    [26]
    Mbezi J, Mango J, Lubida A, et al. Exploring shoreline changes and their implications in coastal communities using GIS and remote sensing techniques: the case of eastern beaches of Unguja island, Tanzania[J]. Regional Studies in Marine Science, 2024, 75: 103566. doi: 10.1016/j.rsma.2024.103566
    [27]
    Palanisamy P, Sivakumar V, Velusamy P, et al. Spatio-temporal analysis of shoreline changes and future forecast using remote sensing, GIS and kalman filter model: a case study of Rio de Janeiro, Brazil[J]. Journal of South American Earth Sciences, 2024, 133: 104701. doi: 10.1016/j.jsames.2023.104701
    [28]
    Hagenaars G, De Vries S, Luijendijk A P, et al. On the accuracy of automated shoreline detection derived from satellite imagery: a case study of the sand motor mega-scale nourishment[J]. Coastal Engineering, 2018, 133: 113−125. doi: 10.1016/j.coastaleng.2017.12.011
    [29]
    Pardo-Pascual J E, Almonacid-Caballer J, Ruiz L A, et al. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision[J]. Remote Sensing of Environment, 2012, 123: 1−11. doi: 10.1016/j.rse.2012.02.024
    [30]
    Pardo-Pascual J E, Sánchez-García E, Almonacid-Caballer J, et al. Assessing the accuracy of automatically extracted shorelines on microtidal beaches from Landsat 7, Landsat 8 and Sentinel-2 imagery[J]. Remote Sensing, 2018, 10(2): 326.
    [31]
    Vos K, Harley M D, Splinter K D, et al. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery[J]. Coastal Engineering, 2019, 150: 160−174. doi: 10.1016/j.coastaleng.2019.04.004
    [32]
    Zhang Xiaodong. Computer-aided shoreline position recognition software[J]. Figshare, 2023. (查阅网上资料, 未找到本条文献卷期页码, 请确认)
    [33]
    吴闯, 张晓东, 许淑梅, 等. 山东青岛灵山湾南部海滩的时空演变及其影响因素[J]. 古地理学报, 2022, 24(1): 152−163. doi: 10.7605/gdlxb.2022.01.012

    Wu Chuang, Zhang Xiaodong, Xu Shumei, et al. Spatial and temporal evolution of Lingnan Beach in Qingdao of Shandong Province and its influencing factors[J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(1): 152−163. doi: 10.7605/gdlxb.2022.01.012
    [34]
    张晓东, 姚雨涵, 朱龙海, 等. 基于大量卫星图像研究青岛汇泉湾海滩近40年的地形地貌演变[J]. 海洋与湖沼, 2022, 53(3): 578−589. doi: 10.11693/hyhz20211100286

    Zhang Xiaodong, Yao Yuhan, Zhu Longhai, et al. Topographic and geomorphological evolution of Huiquan Beach of Qingdao in past 40 years using massive satellite images[J]. Oceanologia et Limnologia Sinica, 2022, 53(3): 578−589. doi: 10.11693/hyhz20211100286
    [35]
    董卫卫. 莱州湾东岸冲淤演变分析与防护[D]. 青岛: 中国海洋大学, 2008.

    Dong Weiwei. The erosion and deposition evolution development and the protection in the east coast of Laizhou[D]. Qingdao: Ocean University of China, 2008.
    [36]
    周广镇. 莱州湾东岸近岸海域规划用海实施后冲淤演变预测[D]. 青岛: 中国海洋大学, 2012.

    Zhou Guangzhen. Evolution prediction of erosion and deposition in the east coast of Laizhou Bay after the implementation of the coastal planning[D]. Qingdao: Ocean University of China, 2012.
    [37]
    伊善堂, 尹东晓, 朱龙海, 等. 招远砂质海岸岸滩演化特征[J]. 海洋地质前沿, 2017, 33(9): 47−52.

    Yi Shantang, Yin Dongxiao, Zhu Longhai, et al. Evolutionary features of the Zhaoyuan sandy beach[J]. Marine Geology Frontiers, 2017, 33(9): 47−52.
    [38]
    庄振业, 陈卫民, 许卫东, 等. 山东半岛若干平直砂岸近期强烈蚀退及其后果[J]. 青岛海洋大学学报, 1989, 19(1): 90−98.

    Zhuang Zhenye, Chen Weimin, Xu Weidong, et al. Retrogression of straight sandy beaches in the Shandong peninsula and its results[J]. Journal of Ocean University of Qingdao, 1989, 19(1): 90−98.
    [39]
    王庆, 杨华, 仲少云, 等. 山东莱州浅滩的沉积动态与地貌演变[J]. 地理学报, 2003, 58(5): 749−756. doi: 10.3321/j.issn:0375-5444.2003.05.014

    Wang Qing, Yang Hua, Zhong Shaoyun, et al. Sedimentary dynamics and geomorphic evolution of the Laizhou shoal[J]. Acta Geographica Sinica, 2003, 58(5): 749−756. doi: 10.3321/j.issn:0375-5444.2003.05.014
    [40]
    常瑞芳, 庄振业, 吴建政. 山东半岛西北海岸的蚀退与防护[J]. 青岛海洋大学学报, 1993, 23(3): 60−68.

    Chang Ruifang, Zhuang Zhenye, Wu Jianzheng. Retrogression and protection of the north-west coast of the Shandong peninsula[J]. Journal of Ocean University of Qingdao, 1993, 23(3): 60−68.
    [41]
    中国海湾志编纂委员会. 中国海湾志(第三分册): 山东半岛北部和东部海湾[M]. 北京: 海洋出版社, 1991.

    Editorial Board of China Bay Survey. Survey of China Bays(Vol. 3): Northern and Eastern Gulf of Shandong Peninsula[M]. Beijing: China Ocean Press, 1991. (查阅网上资料, 未找到本条文献英文翻译, 请确认)
    [42]
    安永宁, 吴建政, 朱龙海, 等. 龙口湾冲淤特性对人工岛群建设的响应[J]. 海洋地质动态, 2010, 26(10): 24−30.

    An Yongning, Wu Jianzheng, Zhu Longhai, et al. Response of erosion-deposition pattern to artificial islands construction in Longkou Bay[J]. Marine Geology Letters, 2010, 26(10): 24−30.
    [43]
    任鹏, 孙志高, 王传远, 等. 人工岛建设对龙口湾表层沉积物粒度及黏土矿物组成特征的影响[J]. 海洋科学进展, 2016, 34(4): 578−587. doi: 10.3969/j.issn.1671-6647.2016.04.014

    Ren Peng, Sun Zhigao, Wang Chuanyuan, et al. Impacts of construction of artificial islands on the flow-sediment regulation scheme on grain and clay compositions in the Longkou Bay[J]. Advances in Marine Science, 2016, 34(4): 578−587. doi: 10.3969/j.issn.1671-6647.2016.04.014
    [44]
    刘波, 胡日军, 李毅, 等. 夏季潮流作用下龙口湾海域悬浮泥沙时空变化特征及其输运机制[J]. 海洋地质前沿, 2020, 36(3): 20−30.

    Liu Bo, Hu Rijun, Li Yi, et al. Spatio-temporal variation characteristics and transport mechanism of suspended sediments in Longkou Bay under the influence of summer tidal current[J]. Marine Geology Frontiers, 2020, 36(3): 20−30.
    [45]
    费成鹏, 胡日军, 雒敏义, 等. 龙口湾水动力特征及其对人工岛群建设的响应[J]. 海洋地质与第四纪地质, 2022, 42(1): 81−95.

    Fei Chengpeng, Hu Rijun, Luo Minyi, et al. Hydrodynamic characteristics of Longkou Bay and its response to artificial island groups[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 81−95.
    [46]
    王超, 姜胜辉, 王世臣, 等. 山东裕龙岛跨河道工程对沉积动力环境影响研究[J]. 海洋地质与第四纪地质, 2024, 44(1): 191−202.

    Wang Chao, Jiang Shenghui, Wang Shichen, et al. Study on the impact of cross-river engineering on sedimentary dynamic environment in Yulong Island, Shandong[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 191−202.
    [47]
    Boak E H, Turner I L. Shoreline definition and detection: a review[J]. Journal of Coastal Research, 2005, 21(4): 688−703.
    [48]
    Matsumoto K, Takanezawa T, Ooe M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan[J]. Journal of oceanography, 2000, 56(5): 567−581.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (11) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return