| Citation: | LIU Ye,LIAO Zhiling,LIU Qi, et al. Review on generation and evolution of infragravity waves[J]. Haiyang Xuebao,2026, 48(x):1–18 |
| [1] |
Munk W H. Surf beat[J]. Eos, Transactions American Geophysical Union, 1949, 30(6): 849−854. doi: 10.1007/springerreference_4765
|
| [2] |
Tucker M J. Surf beats: sea waves of 1 to 5 min. period[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1950, 202(1071): 565−573. doi: 10.1098/rspa.1950.0120
|
| [3] |
Longuet-Higgins M S, Stewart R W. Radiation stress and mass transport in gravity waves, with application to ‘surf beats’[J]. Journal of Fluid Mechanics, 1962, 13(4): 481−504. doi: 10.1017/S0022112062000877
|
| [4] |
Symonds G, Huntley D A, Bowen A J. Two-dimensional surf beat: long wave generation by a time-varying breakpoint[J]. Journal of Geophysical Research: Oceans, 1982, 87(C1): 492−498. doi: 10.1029/JC087iC01p00492
|
| [5] |
Zheng Zhenjun, Dong Guohai, Huang Xuezhi, et al. Infragravity waves at the Hambantota port located in the North Indian Ocean[J]. Applied Ocean Research, 2023, 138: 103658. doi: 10.1016/j.apor.2023.103658
|
| [6] |
Oh J E, Chang Y S, Ryu K H, et al. Infragravity wave height dependency on short wave parameters – observations on the east coast of South Korea[J]. Frontiers in Marine Science, 2023, 10: 1194472. doi: 10.3389/fmars.2023.1194472
|
| [7] |
Matsuba Y, Shimozono T, Sato S. Infragravity wave dynamics on Seisho Coast during Typhoon Lan in 2017[J]. Coastal Engineering Journal, 2020, 62(2): 299−316. doi: 10.1080/21664250.2020.1753901
|
| [8] |
Bertin X, Martins K, de Bakker A, et al. Energy transfers and reflection of infragravity waves at a dissipative beach under storm waves[J]. Journal of Geophysical Research: Oceans, 2020, 125(5): e2019JC015714. doi: 10.1029/2019JC015714
|
| [9] |
Moura T, Baldock T E. The influence of free long wave generation on the shoaling of forced infragravity waves[J]. Journal of Marine Science and Engineering, 2019, 7(9): 305. doi: 10.3390/jmse7090305
|
| [10] |
Aagaard T, Greenwood B. Infragravity wave contribution to surf zone sediment transport — The role of advection[J]. Marine Geology, 2008, 251(1/2): 1−14. doi: 10.1016/j.margeo.2008.01.017
|
| [11] |
de Bakker A T M, Brinkkemper J A, van der Steen F, et al. Cross-shore sand transport by infragravity waves as a function of beach steepness[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(10): 1786−1799. doi: 10.1002/2016JF003878
|
| [12] |
Mase H, Tamada T, Yasuda T, et al. Wave runup and overtopping at seawalls built on land and in very shallow water[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2013, 139(5): 346−357. doi: 10.1061/(ASCE)WW.1943-5460.0000199
|
| [13] |
Altomare C, Suzuki T, Chen Xuexue, et al. Wave overtopping of sea dikes with very shallow foreshores[J]. Coastal Engineering, 2016, 116: 236−257. doi: 10.1016/j.coastaleng.2016.07.002
|
| [14] |
da Silva P G, Coco G, Garnier R, et al. On the prediction of runup, setup and swash on beaches[J]. Earth-Science Reviews, 2020, 204: 103148. doi: 10.1016/j.earscirev.2020.103148
|
| [15] |
Liu Ye, Li Shaowu, Liao Zhiling, et al. Physical and numerical modeling of random wave transformation and overtopping on reef topography[J]. Ocean Engineering, 2021, 220: 108390. doi: 10.1016/j.oceaneng.2020.108390
|
| [16] |
Bowers E C. Harbour resonance due to set-down beneath wave groups[J]. Journal of Fluid Mechanics, 1977, 79(1): 71−92. doi: 10.1017/S0022112077000044
|
| [17] |
高俊亮, 郑振钧, 马小舟, 等. 不规则波诱发港湾共振条件下的低频长波实验研究[J]. 哈尔滨工程大学学报, 2021, 42(7): 975−982. doi: 10.11990/jheu.202002008
Gao Junliang, Zheng Zhenjun, Ma Xiaozhou, et al. Low-frequency long waves during harbor resonance induced by irregular waves[J]. Journal of Harbin Engineering University, 2021, 42(7): 975−982. doi: 10.11990/jheu.202002008
|
| [18] |
金瑞佳, 张崇伟, 柳叶, 等. 顺应式海洋平台慢漂运动物理模型试验研究[J]. 海洋工程, 2021, 39(4): 38−45. doi: 10.16483/j.issn.1005-9865.2021.04.005
Jin Ruijia, Zhang Chongwei, Liu Ye, et al. Physical model investigation on the slow drift motion of compliant mooring floating structure[J]. The Ocean Engineering, 2021, 39(4): 38−45. doi: 10.16483/j.issn.1005-9865.2021.04.005
|
| [19] |
Rijnsdorp D P, Reniers A J H M, Zijlema M. Free infragravity waves in the North Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(8): e2021JC017368. doi: 10.1029/2021JC017368
|
| [20] |
Longuet-Higgins M S, Stewart R W. Changes in the form of short gravity waves on long waves and tidal currents[J]. Journal of Fluid Mechanics, 1960, 8(4): 565−583. doi: 10.1017/S0022112060000803
|
| [21] |
Whitham G B. Mass, momentum and energy flux in water waves[J]. Journal of Fluid Mechanics, 1962, 12(1): 135−147. doi: 10.1017/S0022112062000099
|
| [22] |
Phillips O M. The Dynamics of the Upper Ocean[M]. 2nd ed. Cambridge: Cambridge University Press, 1977.
|
| [23] |
Mei C C, Stiassnie M, Yue D K P. Theory and Applications of Ocean Surface Waves[M]. New Jersey: World Scientific, 2005.
|
| [24] |
Liu Ye, Yao Yu, Liao Zhiling, et al. Fully nonlinear investigation on energy transfer between long waves and short-wave groups over a reef[J]. Coastal Engineering, 2023, 179: 104240. doi: 10.1016/j.coastaleng.2022.104240
|
| [25] |
Schäffer H A. Infragravity waves induced by short-wave groups[J]. Journal of Fluid Mechanics, 1993, 247: 551−588. doi: 10.1017/S0022112093000564
|
| [26] |
Pomeroy A W M, Lowe R J, Van Dongeren A R, et al. Spectral wave-driven sediment transport across a fringing reef[J]. Coastal Engineering, 2015, 98: 78−94. doi: 10.1016/j.coastaleng.2015.01.005
|
| [27] |
Ruju A, Lara J L, Losada I J. Radiation stress and low-frequency energy balance within the surf zone: a numerical approach[J]. Coastal Engineering, 2012, 68: 44−55. doi: 10.1016/j.coastaleng.2012.05.003
|
| [28] |
van Dongeren A, Battjes J, Janssen T, et al. Shoaling and shoreline dissipation of low-frequency waves[J]. Journal of Geophysical Research: Oceans, 2007, 112(C2): C02011. doi: 10.1029/2006jc003701
|
| [29] |
Vrećica T, Soffer R, Toledo Y. Infragravity wave generation by wind gusts[J]. Geophysical Research Letters, 2019, 46(16): 9728−9738. doi: 10.1029/2019GL084241
|
| [30] |
Biesel F. Équations génŕales au second ordre de la houle irrǵulière[J]. La Houille Blanche, 1952, 7: 372−376. (查阅网上资料, 未找到本条文献信息, 请确认)
|
| [31] |
Liao Zhiling, Li Shaowu, Liu Ye, et al. An analytical spectral model for infragravity waves over topography in intermediate and shallow water under nonbreaking conditions[J]. Journal of Physical Oceanography, 2021, 51(9): 2749−2765. doi: 10.1175/jpo-d-20-0164.1
|
| [32] |
Contardo S, Lowe R J, Dufois F, et al. Free long wave generation: breakpoint forcing versus bound wave release[J]. Journal of Geophysical Research: Oceans, 2025, 130(7): e2025JC022377. doi: 10.1029/2025JC022377
|
| [33] |
Janssen T T, Battjes J A, Van Dongeren A R. Long waves induced by short-wave groups over a sloping bottom[J]. Journal of Geophysical Research: Oceans, 2003, 108(C8): 3252. doi: 10.1029/2002jc001515
|
| [34] |
Kostense J K. Measurements of surf beat and set-down beneath wave groups[C]//Proceedings of the 19th International Conference on Coastal Engineering. Houston: ASCE, 1984: 724−740.
|
| [35] |
Hasselmann K. On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory[J]. Journal of Fluid Mechanics, 1962, 12(4): 481−500. doi: 10.1017/S0022112062000373
|
| [36] |
Herbers T H C, Elgar S, Guza R T. Infragravity-frequency (0.005–0.05 hz) motions on the shelf. Part I: forced waves[J]. Journal of Physical Oceanography, 1994, 24(5): 917−927. doi: 10.1175/1520-0485(1994)024<0917:ifhmot>2.0.co;2
|
| [37] |
Bowers E C. Low frequency waves in intermediate water depths[C]//Proceedings of the 23rd International Conference on Coastal Engineering. Venice, Italy: ASCE, 1992: 832−845.
|
| [38] |
van Leeuwen P J. Low frequency wavegeneration due to breaking wind waves[D]. Delft, Netherlands: TU Delft, 1992.
|
| [39] |
Molin B. On the generation of long-period second-order free-waves due to changes in the bottom profile[R]. Tokyo, Japan: Ship Research Institute, 1982.
|
| [40] |
Mei C C, Benmoussa C. Long waves induced by short-wave groups over an uneven bottom[J]. Journal of Fluid Mechanics, 1984, 139: 219−235. doi: 10.1017/S0022112084000331
|
| [41] |
Liu P L F. A note on long waves induced by short-wave groups over a shelf[J]. Journal of Fluid Mechanics, 1989, 205: 163−170. doi: 10.1017/S0022112089001989
|
| [42] |
Zou Qingping. Generation, transformation, and scattering of long waves induced by a short-wave group over finite topography[J]. Journal of Physical Oceanography, 2011, 41(10): 1842−1859. doi: 10.1175/2011JPO4511.1
|
| [43] |
Liao Zhiling, Liu Ye, Liu Wenhe, et al. Experimental investigation of evolution of infragravity waves over a large-scale shoal[J]. Coastal Engineering, 2025, 197: 104687. doi: 10.1016/j.coastaleng.2024.104687
|
| [44] |
Liao Zhiling, Zou Qingping, Liu Ye, et al. Unified analytical solution for group-induced infragravity waves based on Green’s function[J]. Journal of Fluid Mechanics, 2023, 967: A37. doi: 10.1017/jfm.2023.475
|
| [45] |
Baldock T E, Huntley D A, Bird P A D, et al. Breakpoint generated surf beat induced by bichromatic wave groups[J]. Coastal Engineering, 2000, 39(2/4): 213−242. doi: 10.1016/s0378-3839(99)00061-7
|
| [46] |
Baldock T E, Huntley D A. Long–wave forcing by the breaking of random gravity waves on a beach[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458(2025): 2177−2201. doi: 10.1098/rspa.2002.0962
|
| [47] |
Moura T, Baldock T E. New evidence of breakpoint forced long waves: laboratory, numerical, and field observations[J]. Journal of Geophysical Research: Oceans, 2018, 123(4): 2716−2730. doi: 10.1002/2017JC013621
|
| [48] |
Masselink G. Group bound long waves as a source of infragravity energy in the surf zone[J]. Continental Shelf Research, 1995, 15(13): 1525−1547. doi: 10.1016/0278-4343(95)00037-2
|
| [49] |
Pomeroy A, Lowe R, Symonds G, et al. The dynamics of infragravity wave transformation over a fringing reef[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11): C11022.
|
| [50] |
Contardo S, Symonds G, Dufois F. Breakpoint forcing revisited: Phase between forcing and response[J]. Journal of Geophysical Research: Oceans, 2018, 123(2): 1354−1363. doi: 10.1002/2017JC013138
|
| [51] |
List J H. Wave groupiness variations in the nearshore[J]. Coastal Engineering, 1991, 15(5/6): 475−496. doi: 10.1016/0378-3839(91)90024-b
|
| [52] |
Mase H. Groupiness factor and wave height distribution[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1989, 115(1): 105−121. doi: 10.1061/(ASCE)0733-950X(1989)115:1(105)
|
| [53] |
Power H E, Hughes M G, Aagaard T, et al. Nearshore wave height variation in unsaturated surf[J]. Journal of Geophysical Research: Oceans, 2010, 115(C8): C08030. doi: 10.1029/2009jc005758
|
| [54] |
Liu Ye, Li Shaowu. Variation of wave groupiness across a fringing reef[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2018, 144(6): 04018022. doi: 10.1061/(ASCE)WW.1943-5460.0000475
|
| [55] |
Guza R T, Thornton E B. Swash oscillations on a natural beach[J]. Journal of Geophysical Research: Oceans, 1982, 87(C1): 483−491. doi: 10.1029/JC087iC01p00483
|
| [56] |
Guza R T, Thornton E B, Holman R A. Swash on steep and shallow beaches[C]//Proceedings of the 19th International Conference on Coastal Engineering. Houston: ASCE, 1984: 708−723.
|
| [57] |
Sénéchal N, Bonneton P, Dupuis H. Field observations of irregular wave transformation in the surf zone[C]//Proceedings of the Fourth Conference on Coastal Dynamics. Lund: ASCE, 2001: 62−71.
|
| [58] |
Tissier M, Bonneton P, Michallet H, et al. Infragravity-wave modulation of short-wave celerity in the surf zone[J]. Journal of Geophysical Research: Oceans, 2015, 120(10): 6799−6814. doi: 10.1002/2015JC010708
|
| [59] |
Mase H, Iwagaki Y. Run-up of random waves on gentle slopes[C]//Proceedings of the 19th International Conference on Coastal Engineering. Houston: ASCE, 1984: 593−609.
|
| [60] |
Mase H. Random wave runup height on gentle slope[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1989, 115(5): 649−661. doi: 10.1061/(ASCE)0733-950X(1989)115:5(649)
|
| [61] |
Peregrine D H. Water-wave interaction in the surf zone[C]//Proceedings of the 14th International Conference on Coastal Engineering. Copenhagen: ASME, 1974: 500−517.
|
| [62] |
Marche F, Bonneton P, Fabrie P, et al. Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes[J]. International Journal for Numerical Methods in Fluids, 2007, 53(5): 867−894. doi: 10.1002/fld.1311
|
| [63] |
Tissier M, Bonneton P, Ruessink G. Infragravity waves and bore merging[M]//Aagaard T, Deigaard R, Fuhrman D. Proceedings of Coastal Dynamics 2017. Helsingør, Denmark, 2017: 451−460. (查阅网上资料, 未找到对应的出版者信息, 请确认)
|
| [64] |
Battjes J A, Bakkenes H J, Janssen T T, et al. Shoaling of subharmonic gravity waves[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2): C02009. doi: 10.1142/9789812701916_0097
|
| [65] |
de Bakker A T M, Tissier M F S, Ruessink B G. Beach steepness effects on nonlinear infragravity-wave interactions: a numerical study[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 554−570. doi: 10.1002/2015JC011268
|
| [66] |
de Bakker A T M, Herbers T H C, Smit P B, et al. Nonlinear infragravity–wave interactions on a gently sloping laboratory beach[J]. Journal of Physical Oceanography, 2015, 45(2): 589−605. doi: 10.1175/JPO-D-14-0186.1
|
| [67] |
Henderson S M, Guza R T, Elgar S, et al. Nonlinear generation and loss of infragravity wave energy[J]. Journal of Geophysical Research: Oceans, 2006, 111(C12): C12007. doi: 10.1029/2006jc003539
|
| [68] |
Baldock T E. Dissipation of incident forced long waves in the surf zone—Implications for the concept of “bound” wave release at short wave breaking[J]. Coastal Engineering, 2012, 60: 276−285. doi: 10.1016/j.coastaleng.2011.11.002
|
| [69] |
Green G. On the motion of waves in a variable canal of small depth and width[J]. Transactions of the Cambridge Philosophical Society, 1838, 6: 457. doi: 10.1017/cbo9781107325074.007
|
| [70] |
Zhang Qinghui, Toorman E A, Monbaliu J. Shoaling of bound infragravity waves on plane slopes for bichromatic wave conditions[J]. Coastal Engineering, 2020, 158: 103684. doi: 10.1016/j.coastaleng.2020.103684
|
| [71] |
Li Shaowu, Liao Zhiling, Liu Ye, et al. Evolution of infragravity waves over a shoal under nonbreaking conditions[J]. Journal of Geophysical Research: Oceans, 2020, 125(8): e2019JC015864. doi: 10.1029/2019JC015864
|
| [72] |
Ardhuin F, Rawat A, Aucan J. A numerical model for free infragravity waves: definition and validation at regional and global scales[J]. Ocean Modelling, 2014, 77: 20−32. doi: 10.1016/j.ocemod.2014.02.006
|
| [73] |
高翔. 次重力波驱动力及其与短波相关性研究[D]. 大连: 大连理工大学, 2024.
Gao Xiang. Study of the driving force of infragravity wave and its correlation with short waves[D]. Dalian: Dalian University of Technology, 2024.
|
| [74] |
Matsuba Y, Roelvink D, Reniers A J H M, et al. Reconstruction of directional spectra of infragravity waves[J]. Journal of Geophysical Research: Oceans, 2022, 127(7): e2021JC018273. doi: 10.1029/2021JC018273
|
| [75] |
de Souza e Silva M G, Kerpen N B, Rosman P C C, et al. Directional infragravity waves induced by bichromatic and bidirectional waves: theoretical approach and experimental affirmation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2022, 148(5): 04022012. doi: 10.1061/(ASCE)WW.1943-5460.0000711
|
| [76] |
Sheremet A, Guza R T, Elgar S, et al. Observations of nearshore infragravity waves: seaward and shoreward propagating components[J]. Journal of Geophysical Research: Oceans, 2002, 107(C8): 3095. doi: 10.21236/ada409757
|
| [77] |
Ruessink B G. Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions[J]. Journal of Geophysical Research: Oceans, 1998, 103(C6): 12795−12805. doi: 10.1029/98JC00893
|
| [78] |
Guedes R M C, Bryan K R, Coco G. Observations of wave energy fluxes and swash motions on a low-sloping, dissipative beach[J]. Journal of Geophysical Research: Oceans, 2013, 118(7): 3651−3669. doi: 10.1002/jgrc.20267
|
| [79] |
Henderson S M, Bowen A J. Observations of surf beat forcing and dissipation[J]. Journal of Geophysical Research: Oceans, 2002, 107(C11): 3193. doi: 10.1029/2000jc000498
|
| [80] |
de Bakker A T M, Tissier M F S, Ruessink B G. Shoreline dissipation of infragravity waves[J]. Continental Shelf Research, 2014, 72: 73−82. doi: 10.1016/j.csr.2013.11.013
|
| [81] |
Lin Y H, Hwung H H. Infra-gravity wave generation by the shoaling wave groups over beaches[J]. China Ocean Engineering, 2012, 26(1): 1−18. doi: 10.1007/s13344-012-0001-9
|
| [82] |
Lowe R J, Falter J L, Bandet M D, et al. Spectral wave dissipation over a barrier reef[J]. Journal of Geophysical Research: Oceans, 2005, 110(C4): C04001. doi: 10.1029/2022gl102104
|
| [83] |
Fiedler J W, Smit P B, Brodie K L, et al. The offshore boundary condition in surf zone modeling[J]. Coastal Engineering, 2019, 143: 12−20. doi: 10.1016/j.coastaleng.2018.10.014
|
| [84] |
Rijnsdorp D P, Smit P B, Guza R T. A nonlinear, non-dispersive energy balance for surfzone waves: infragravity wave dynamics on a sloping beach[J]. Journal of Fluid Mechanics, 2022, 944: A45. doi: 10.1017/jfm.2022.512
|
| [85] |
Hughes M G, Aagaard T, Baldock T E, et al. Spectral signatures for swash on reflective, intermediate and dissipative beaches[J]. Marine Geology, 2014, 355: 88−97. doi: 10.1016/j.margeo.2014.05.015
|
| [86] |
Smit P B, Janssen T T, Herbers T H C, et al. Infragravity wave radiation across the shelf break[J]. Journal of Geophysical Research: Oceans, 2018, 123(7): 4483−4490. doi: 10.1029/2018JC013986
|
| [87] |
Huntley D A, Guza R T, Thornton E B. Field observations of surf beat: 1. Progressive edge waves[J]. Journal of Geophysical Research: Oceans, 1981, 86(C7): 6451−6466. doi: 10.1029/JC086iC07p06451
|
| [88] |
Suhayda J N. Standing waves on beaches[J]. Journal of Geophysical Research, 1974, 79(21): 3065−3071. doi: 10.1029/JC079i021p03065
|
| [89] |
Guza R T, Thornton E B. Observations of surf beat[J]. Journal of Geophysical Research: Oceans, 1985, 90(C2): 3161−3172. doi: 10.1029/JC090iC02p03161
|
| [90] |
Henderson S M, Elgar S, Bowen A J. Observations of surf beat propagation and energetics[C]//Proceedings of the 27th International Conference on Coastal Engineering. Sydney: ASCE, 2000: 1412−1421.
|
| [91] |
Rijnsdorp D P, Ruessink G, Zijlema M. Infragravity-wave dynamics in a barred coastal region, a numerical study[J]. Journal of Geophysical Research: Oceans, 2015, 120(6): 4068−4089. doi: 10.1002/2014JC010450
|
| [92] |
Elgar S, Herbers T H C, Guza R T. Reflection of ocean surface gravity waves from a natural beach[J]. Journal of Physical Oceanography, 1994, 24(7): 1503−1511. doi: 10.1175/1520-0485(1994)024<1503:roosgw>2.0.co;2
|
| [93] |
Okihiro M, Guza R T. Infragravity energy modulation by tides[J]. Journal of Geophysical Research: Oceans, 1995, 100(C8): 16143−16148. doi: 10.1029/95JC01545
|
| [94] |
Thomson J, Elgar S, Raubenheimer B, et al. Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone[J]. Geophysical Research Letters, 2006, 33(5): L05601. doi: 10.1029/2005gl025514
|
| [95] |
Lara J L, Ruju A, Losada I J. Reynolds averaged Navier—Stokes modelling of long waves induced by a transient wave group on a beach[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467(2129): 1215−1242. doi: 10.1098/rspa.2010.0331
|
| [96] |
Inch K, Davidson M, Masselink G, et al. Observations of nearshore infragravity wave dynamics under high energy swell and wind-wave conditions[J]. Continental Shelf Research, 2017, 138: 19−31. doi: 10.1016/j.csr.2017.02.010
|
| [97] |
Inch K, Davidson M, Masselink G, et al. Correcting wave reflection estimates in the coastal zone[J]. Coastal Engineering, 2017, 119: 65−71. doi: 10.1016/j.coastaleng.2016.09.004
|
| [98] |
Dong Guohai, Ma Xiaozhou, Perlin M, et al. Experimental study of long wave generation on sloping bottoms[J]. Coastal Engineering, 2009, 56(1): 82−89. doi: 10.1016/j.coastaleng.2008.10.002
|
| [99] |
Padilla E M, Alsina J M. Long wave generation induced by differences in the wave-group structure[J]. Journal of Geophysical Research: Oceans, 2018, 123(12): 8921−8940. doi: 10.1029/2018JC014213
|
| [100] |
Moura T, Baldock T E. Remote sensing of the correlation between breakpoint oscillations and infragravity waves in the surf and swash zone[J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 3106−3122. doi: 10.1002/2016JC012233
|
| [101] |
Quataert E, Storlazzi C, Van Rooijen A, et al. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines[J]. Geophysical Research Letters, 2015, 42(15): 6407−6415. doi: 10.1002/2015GL064861
|
| [102] |
Masselink G, Tuck M, McCall R, et al. Physical and numerical modeling of infragravity wave generation and transformation on coral reef platforms[J]. Journal of Geophysical Research: Oceans, 2019, 124(3): 1410−1433. doi: 10.1029/2018JC014411
|
| [103] |
Paniagua-Arroyave J F, Adams P N, Parra S M, et al. Observations of surface-gravity-wave scattering and dissipation by an isolated shoal related to a cuspate foreland[J]. Continental Shelf Research, 2019, 173: 43−55. doi: 10.1016/j.csr.2018.12.004
|
| [104] |
Thotagamuwage D T, Pattiaratchi C B. Influence of offshore topography on infragravity period oscillations in Two Rocks Marina, Western Australia[J]. Coastal Engineering, 2014, 91: 220−230. doi: 10.1016/j.coastaleng.2014.05.011
|
| [105] |
廖智凌. 近岸水下浅滩上次重力波非线性演化机理及应用[D]. 天津: 天津大学, 2022.
Liao Zhiling. Nonlinear evolution of infragravity waves over nearshore underwater shoals: mechanism and applications[D]. Tianjin: Tianjin University, 2022.
|
| [106] |
赵松龄. 苏北浅滩成因的最新研究[J]. 海洋地质与第四纪地质, 1991, 11(3): 105−112. doi: 10.16562/j.cnki.0256-1492.1991.03.010
Zhao Songling. The latest study on origin of the north Jiangsu Shoal[J]. Marine Geology & Quaternary Geology, 1991, 11(3): 105−112. doi: 10.16562/j.cnki.0256-1492.1991.03.010
|
| [107] |
Bao Jingjing, Cai Feng, Shi Fengyan, et al. Morphodynamic response of sand waves in the Taiwan Shoal to a passing tropical storm[J]. Marine Geology, 2020, 426: 106196. doi: 10.1016/j.margeo.2020.106196
|
| [108] |
谭子杰, 牛淑杰, 李茂田, 等. 崇明东滩北侧拦门沙浅滩涨落潮和大小潮冲淤过程及机制分析[J]. 华东师范大学学报(自然科学版), 2025(4): 147−157.
Tan Zijie, Niu Shujie, Li Maotian, et al. Analysis of erosion–deposition processes and mechanisms during flood–ebb and spring–neap tides over the mouth bar shoal on the northern side of Chongming Dongtan[J]. Journal of East China Normal University (Natural Science), 2025(4): 147−157.
|
| [109] |
李绍武, 陈天慧, 廖智凌, 等. 浅滩地形上波浪破碎对低频波能放大的影响[J]. 海洋工程, 2023, 41(1): 1−11. doi: 10.16483/j.issn.1005-9865.2023.01.001
Li Shaowu, Chen Tianhui, Liao Zhiling, et al. Effects of wave breaking on the evolution of low-frequency wave energy over shoal topography[J]. The Ocean Engineering, 2023, 41(1): 1−11. doi: 10.16483/j.issn.1005-9865.2023.01.001
|
| [110] |
Liao Zhiling, Li Shaowu, Paniagua-Arroyave J F, et al. Infragravity wave amplification by isolated topography: field observations and semi-analytical modeling[J]. Applied Ocean Research, 2022, 122: 103119. doi: 10.1016/j.apor.2022.103119
|
| [111] |
Ferrario F, Beck M W, Storlazzi C D, et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation[J]. Nature Communications, 2014, 5(1): 3794. doi: 10.1038/ncomms4794
|
| [112] |
Roeber V, Bricker J D. Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan[J]. Nature Communications, 2015, 6(1): 7854. doi: 10.1038/ncomms8854
|
| [113] |
Liu Ye, Li Shaowu, Chen Songgui, et al. Random wave overtopping of vertical seawalls on coral reefs[J]. Applied Ocean Research, 2020, 100: 102166. doi: 10.1016/j.apor.2020.102166
|
| [114] |
Cheriton O M, Storlazzi C D, Rosenberger K J. Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding[J]. Journal of Geophysical Research: Oceans, 2016, 121(5): 3121−3140. doi: 10.1002/2015JC011231
|
| [115] |
Becker J M, Merrifield M A, Yoon H. Infragravity waves on fringing reefs in the tropical Pacific: dynamic setup[J]. Journal of Geophysical Research: Oceans, 2016, 121(5): 3010−3028. doi: 10.1002/2015JC011516
|
| [116] |
Yao Yu, Jia Meijun, Jiang Changbo, et al. Laboratory study of wave processes over fringing reefs with a reef-flat excavation pit[J]. Coastal Engineering, 2020, 158: 103700. doi: 10.1016/j.coastaleng.2020.103700
|
| [117] |
Buckley M L, Lowe R J, Hansen J E, et al. Mechanisms of wave-driven water level variability on reef-fringed coastlines[J]. Journal of Geophysical Research: Oceans, 2018, 123(5): 3811−3831. doi: 10.1029/2018JC013933
|
| [118] |
Péquignet A N, Becker J M, Merrifield M A. Energy transfer between wind waves and low-frequency oscillations on a fringing reef, Ipan, Guam[J]. Journal of Geophysical Research: Oceans, 2014, 119(10): 6709−6724. doi: 10.1002/2014JC010179
|
| [119] |
Zhu Gancheng, Wen Hongjie, Dong Ping, et al. Experimental investigation of infragravity wave propagation on a porous reef[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2023, 149(3): 04023003. doi: 10.1061/JWPED5.WWENG-1944
|
| [120] |
Beetham E, Kench P S, O’Callaghan J, et al. Wave transformation and shoreline water level on Funafuti Atoll, Tuvalu[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 311−326.
|
| [121] |
Péquignet A C N, Becker J M, Merrifield M A, et al. Forcing of resonant modes on a fringing reef during tropical storm Man-Yi[J]. Geophysical Research Letters, 2009, 36(3): L03607. doi: 10.1029/2008gl036259
|
| [122] |
Nwogu O, Demirbilek Z. Infragravity wave motions and runup over shallow fringing reefs[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2010, 136(6): 295−305. doi: 10.1061/(ASCE)WW.1943-5460.0000050
|
| [123] |
Gawehn M, van Dongeren A, van Rooijen A, et al. Identification and classification of very low frequency waves on a coral reef flat[J]. Journal of Geophysical Research: Oceans, 2016, 121(10): 7560−7574. doi: 10.1002/2016JC011834
|
| [124] |
Rutten J, Torres-Freyermuth A, Puleo J A. Uncertainty in runup predictions on natural beaches using XBeach nonhydrostatic[J]. Coastal Engineering, 2021, 166: 103869. doi: 10.1016/j.coastaleng.2021.103869
|
| [125] |
Yao Yu, Zhang Qiming, Becker J M, et al. Boussinesq modeling of wave processes in field fringing reef environments[J]. Applied Ocean Research, 2020, 95: 102025. doi: 10.1016/j.apor.2019.102025
|
| [126] |
Liu Ye, Liao Zhiling, Fang Kezhao, et al. Uncertainty of wave runup prediction on coral reef-fringed coasts using SWASH model[J]. Ocean Engineering, 2021, 242: 110094. doi: 10.1016/j.oceaneng.2021.110094
|