Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Yi Zhou,Heyue Zhang,Menghan Kang, et al. The influence law of tidal flat benthic microalgae on sediment components[J]. Haiyang Xuebao,2025, 47(x):1–12
Citation: Yi Zhou,Heyue Zhang,Menghan Kang, et al. The influence law of tidal flat benthic microalgae on sediment components[J]. Haiyang Xuebao,2025, 47(x):1–12

The influence law of tidal flat benthic microalgae on sediment components

  • Received Date: 2024-12-27
  • Rev Recd Date: 2025-03-11
  • Available Online: 2025-04-23
  • There are complex interactions between the sediment components of silty-muddy tidal flats and benthic microalgae, which affect the stability of the tidal flat ecosystem and geomorphological evolution. In order to explore the influence law of benthic microalgae on sediment components, this study took the typical silty-muddy tidal flat in Tiaozini, Jiangsu Province as the research object. Through field observations and laboratory analyses, the temporal and spatial variations and the interrelationships between benthic microalgae and sediment components were revealed. The research results show that there are temporal and spatial differences in the biomass of benthic microalgae and the particle size distribution of sediments. The biomass of benthic microalgae in autumn and winter is higher than that in spring and summer, and it is distributed in the surface layer of 0−1 cm. The median particle size in spring and summer is larger than that in autumn and winter. The difference in hydrodynamic forces on both sides of tidal channels leads to the synchronous mutation phenomenon of the biomass of benthic microalgae and sediment components. The biomass of microalgae in the convex bank area is relatively high and the sediment particle size is smaller, while in the concave bank area, the erosion is intense and the biomass decreases. Environmental conditions (such as temperature and light) and the composition of microalgae communities jointly drive the temporal and spatial changes in the relationship between benthic microalgae and sediment components. In summer, the diverse microalgae communities enhance the biostabilization effect on various sediment components, while in winter, the dominant position of diatoms strengthens the selectivity for clay and fine silt.
  • loading
  • [1]
    张长宽, 徐孟飘, 周曾, 等. 潮滩剖面形态与泥沙分选研究进展[J]. 水科学进展, 2018, 29(2): 269−282.

    Zhang Changkuan, Xu Mengpiao, Zhou Zeng, et al. Advances in cross-shore profile characteristics and sediment sorting dynamics of tidal flats[J]. Advances in Water Science, 2018, 29(2): 269−282.
    [2]
    陈才俊. 江苏淤长型淤泥质潮滩的剖面发育[J]. 海洋与湖沼, 1991, 22(4): 360−368.

    Chen Caijun. Development of depositional tidal flat in Jiangsu province[J]. Oceanologia et Limnologia Sinica, 1991, 22(4): 360−368.
    [3]
    Zhou Zeng, Ye Qinghua, Coco G. A one-dimensional biomorphodynamic model of tidal flats: sediment sorting, marsh distribution, and carbon accumulation under sea level rise[J]. Advances in Water Resources, 2016, 93: 288−302. doi: 10.1016/j.advwatres.2015.10.011
    [4]
    王庆, 王小鲁, 李雪艳, 等. 黄河三角洲南部废弃三角洲潮间滩涂表层沉积粒度特征及其粗化现象[J]. 第四纪研究, 2017, 37(2): 353−367.

    Wang Qing, Wang Xiaolu, Li Xueyan, et al. Grain size characteristics and coarsening phenomenon of inter-tidal flat surficial sediment along the abandoned southern yellow river sub-delta[J]. Quaternary Sciences, 2017, 37(2): 353−367.
    [5]
    Fan Daidu, Guo Yanxia, Wang Ping, et al. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang delta, China: with an emphasis on storm impacts[J]. Continental Shelf Research, 2006, 26(4): 517−538. doi: 10.1016/j.csr.2005.12.011
    [6]
    Mariotti G, Fagherazzi S. Modeling the effect of tides and waves on benthic biofilms[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G4): G04010.
    [7]
    van de Koppel J, Herman P M J, Thoolen P, et al. Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat[J]. Ecology, 2001, 82(12): 3449−3461. doi: 10.1890/0012-9658(2001)082[3449:DASSOI]2.0.CO;2
    [8]
    周曾, 陈雷, 林伟波, 等. 盐沼潮滩生物动力地貌演变研究进展[J]. 水科学进展, 2021, 32(3): 470−484.

    Zhou Zeng, Chen Lei, Lin Weibo, et al. Advances in biogeomorphology of tidal flat-saltmarsh systems[J]. Advances in Water Science, 2021, 32(3): 470−484.
    [9]
    龚政, 陈欣迪, 周曾, 等. 生物作用对海岸带泥沙运动的影响[J]. 科学通报, 2021, 66(1): 53−62. doi: 10.1360/TB-2020-0291

    Gong Zheng, Chen Xindi, Zhou Zeng, et al. The roles of biological factors in coastal sediment transport: a review[J]. Chinese Science Bulletin, 2021, 66(1): 53−62. doi: 10.1360/TB-2020-0291
    [10]
    Dame R F. Ecology of Marine Bivalves: An Ecosystem Approach[M]. 2nd ed. Boca Raton: CRC Press, 2012.
    [11]
    Castro P, Huber M E. Marine Biology[M]. 5th ed. New York: McGraw-Hill Higher Education, 2005.
    [12]
    Kirby J S, Stattersfield A J, Butchart S H M, et al. Key conservation issues for migratory land-and waterbird species on the world's major flyways[J]. Bird Conservation International, 2008, 18(S1): S49−S73. doi: 10.1017/S0959270908000439
    [13]
    van de Kam J, Ens B J, Piersma T, et al. Shorebirds. An Illustrated Behavioural Ecology[M]. Utrecht: KNNV Publishers, 2004.
    [14]
    Droppo I G. Rethinking what constitutes suspended sediment[J]. Hydrological Processes, 2001, 15(9): 1551−1564. doi: 10.1002/hyp.228
    [15]
    Paterson D M, Black K S. Water flow, sediment dynamics and benthic ecology[J]. Advances in Ecological Research, 1999, 29: 155−193.
    [16]
    Herman P M J, Middelburg J J, Heip C H R. Benthic community structure and sediment processes on an intertidal flat: results from the ECOFLAT project[J]. Continental Shelf Research, 2001, 21(18/19): 2055−2071.
    [17]
    陈益山. 细颗粒泥沙生物膜生长及对吸附与解吸影响的实验研究[D]. 北京: 清华大学, 2017.

    Chen Yishan. Experiment on biofilm growth of cohesive sediment and effect on adsorption or desorption[D]. Beijing: Tsinghua University, 2017.
    [18]
    Sutherland T F, Amos C L, Grant J. The effect of buoyant biofilms on the erodibility of sublittoral sediments of a temperate microtidal estuary[J]. Limnology and Oceanography, 1998, 43(2): 225−235. doi: 10.4319/lo.1998.43.2.0225
    [19]
    Chen Xindi, Zhang Changkuan, Paterson D M, et al. The effect of cyclic variation of shear stress on non-cohesive sediment stabilization by microbial biofilms: the role of 'biofilm precursors'[J]. Earth Surface Processes and Landforms, 2019, 44(7): 1471−1481. doi: 10.1002/esp.4573
    [20]
    Garwood J C, Hill P S, Law B A. Biofilms and size sorting of fine sediment during erosion in intertidal sands[J]. Estuaries and Coasts, 2013, 36(5): 1024−1036. doi: 10.1007/s12237-013-9618-z
    [21]
    Garwood J C, Hill P S, MacIntyre H L, et al. Grain sizes retained by diatom biofilms during erosion on tidal flats linked to bed sediment texture[J]. Continental Shelf Research, 2015, 104: 37−44. doi: 10.1016/j.csr.2015.05.004
    [22]
    Arnon S, Marx L P, Searcy K E, et al. Effects of overlying velocity, particle size, and biofilm growth on stream-subsurface exchange of particles[J]. Hydrological Processes, 2010, 24(1): 108−114. doi: 10.1002/hyp.7490
    [23]
    Shi Benwei, Pratolongo P D, Du Yongfen, et al. Influence of macrobenthos (Meretrix meretrix linnaeus) on erosion‐accretion processes in intertidal flats: a case study from a cultivation zone[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(1): e2019JG005345. doi: 10.1029/2019JG005345
    [24]
    Cadée G C, Hegeman J. Persisting high levels of primary production at declining phosphate concentrations in the dutch coastal area (marsdiep)[J]. Netherlands Journal of Sea Research, 1993, 31(2): 147−152. doi: 10.1016/0077-7579(93)90004-C
    [25]
    宁修仁, 刘子琳. 象山港潮滩底栖微型藻类现存量的初级生产力[J]. 海洋学报, 1999, 21(3): 98−105.

    Ning Xiuren, Liu Zilin. Standing crop and productivity of the benthic microflora living on tidal flats of the Xiangshan Bay[J]. Haiyang Xuebao, 1999, 21(3): 98−105.
    [26]
    姚晓. 黄河三角洲南部潮间带底栖生产力研究[D]. 青岛: 中国海洋大学, 2010.

    Yao Xiao. Study on the benthic productivities in the Southern intertidal area of the Yellow River Delta[D]. Qingdao: Ocean University of China, 2010.
    [27]
    Daggers T D, Kromkamp J C, Herman P M J, et al. A model to assess microphytobenthic primary production in tidal systems using satellite remote sensing[J]. Remote Sensing of Environment, 2018, 211: 129−145. doi: 10.1016/j.rse.2018.03.037
    [28]
    Tolhurst T J, Jesus B, Brotas V, et al. Diatom migration and sediment armouring - an example from the Tagus Estuary, Portugal[J]. Hydrobiologia, 2003, 503(1): 183−193.
    [29]
    de Deckere E M G T, Tolhurst T J, de Brouwer J F C. Destabilization of cohesive intertidal sediments by infauna[J]. Estuarine, Coastal and Shelf Science, 2001, 53(5): 665−669. doi: 10.1006/ecss.2001.0811
    [30]
    吕亭豫, 龚政, 张长宽, 等. 粉砂淤泥质潮滩潮沟形态特征及发育演变过程研究现状[J]. 河海大学学报(自然科学版), 2016, 44(2): 178−188.

    Lyu Tingyu, Gong Zheng, Zhang Changkuan, et al. Reviews of morphological characteristics and evolution processes of silty mud tidal creeks[J]. Journal of Hohai University (Natural Sciences), 2016, 44(2): 178−188.
    [31]
    China Coastal Waterbird Census Group, Bai Qingquan, Chen Jianzhong, et al. Identification of coastal wetlands of international importance for waterbirds: a review of China Coastal Waterbird Surveys 2005–2013[J]. Avian Research, 2015, 6(1): 12. doi: 10.1186/s40657-015-0021-2
    [32]
    王义刚, 陈橙, 黄惠明. 江苏省条子泥滩涂匡围相关问题研究[J]. 浙江水利科技, 2012(1): 4−8.

    Wang Yigang, Chen Cheng, Huang Huiming. Beach reclamation related issues of Tiaozini in Jiangsu[J]. Zhejiang Hydrotechnics, 2012(1): 4−8.
    [33]
    周聪. 江苏条子泥垦区(一期)围垦工程后评价研究[D]. 南京: 南京师范大学, 2018.

    Zhou Cong. Post evaluation study on the reclamation project of Jiangsu Tiaozi Ni reclamation area (Phase I)[D]. Nanjing: Nanjing Normal University, 2018. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [34]
    丁贤荣, 康彦彦, 葛小平, 等. 辐射沙脊群条子泥动力地貌演变遥感分析[J]. 河海大学学报(自然科学版), 2011, 39(2): 231−236.

    Ding Xianrong, Kang Yanyan, Ge Xiaoping, et al. Tidal flat evolution analysis using remote sensing on Tiaozini flat of the radial sand ridges[J]. Journal of Hohai University (Natural Sciences), 2011, 39(2): 231−236.
    [35]
    任玉蓉, 王钰祺, 张晴晴, 等. 条子泥围堰区土壤微生物多样性特征[J]. 浙江农业科学, 2023, 64(5): 1283−1291.

    Ren Yurong, Wang Yuqi, Zhang Qingqing, et al. Characteristics of soil microbial diversity in Tiaozini cofferdam area[J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(5): 1283−1291.
    [36]
    刘潞, 余夏杨, 唐洪根, 等. 围垦对条子泥互花米草种群年季扩张特征的影响[J]. 农业资源与环境学报, 2019, 36(3): 376−384.

    Liu Lu, Yu Xiayang, Tang Honggen, et al. Effect of reclamation on the annual and seasonal characteristics of Spartina alterniflora population in Tiaozini coastal wetland[J]. Journal of Agricultural Resources and Environment, 2019, 36(3): 376−384.
    [37]
    李少朋, 邢前国. 潮滩底栖微藻生物量垂直变化对其遥感反演模式的影响[J]. 生态科学, 2014, 33(6): 1155−1159.

    Li Shaopeng, Xing Qianguo. Impacts of vertical distribution of microphytobenthos biomass in surface tidal flat sediments on its remote sensing retrieval algorithms[J]. Ecological Science, 2014, 33(6): 1155−1159.
    [38]
    Liu Weiqiu, Zhang Jielong, Tian Guanghong, et al. Temporal and vertical distribution of microphytobenthos biomass in mangrove sediments of Zhujiang (Pearl River) Estuary[J]. Acta Oceanologica Sinica, 2013, 32(4): 82−88. doi: 10.1007/s13131-013-0302-8
    [39]
    Blott S J, Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11): 1237−1248. doi: 10.1002/esp.261
    [40]
    Mcnaughton S J. Relationships among functional properties of Californian grassland[J]. Nature, 1967, 216(5111): 168−169.
    [41]
    Shannon C E. A mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 3−55. doi: 10.1145/584091.584093
    [42]
    李万会. 潮滩湿地沉积物中叶绿素a浓度的变化特征及其与沉积物特性间的关系初探[D]. 上海: 华东师范大学, 2006

    Li Wanhui. Primary study on relation between variation of chlorophyll a concentration and sediment grain size on an intertidal flat[D]. Shanghai: East China Normal University, 2006.
    [43]
    Morris E P, Kromkamp J C. Influence of temperature on the relationship between oxygen- and fluorescence-based estimates of photosynthetic parameters in a marine benthic diatom (Cylindrotheca closterium)[J]. European Journal of Phycology, 2003, 38(2): 133−142. doi: 10.1080/0967026031000085832
    [44]
    尹晖, 孙耀, 石晓勇, 等. 乳山湾东流区滩涂底栖微藻现存量和初级生产力[J]. 海洋水产研究, 2006, 27(3): 62−66.

    Yin Hui, Sun Yao, Shi Xiaoyong, et al. Biomass and primary productivity of the microphytobenthos on mudflats of the Rushan Bay east flow area[J]. Marine Fisheries Research, 2006, 27(3): 62−66.
    [45]
    Zhang Heyue, Sun Tao, Cao Haobing, et al. Movement of mud snails affects population dynamics, primary production and landscape heterogeneity in tidal flat ecosystems[J]. Landscape Ecology, 2021, 36(12): 3493−3506. doi: 10.1007/s10980-021-01322-7
    [46]
    李晓莉, 陶玲, 代梨梨, 等. 温度和起始密度比对舟形藻和小球藻生长和竞争的影响[J]. 南方水产科学, 2021, 17(5): 18−25. doi: 10.12131/20200250

    Li Xiaoli, Tao Ling, Dai Lili, et al. Effects of temperature and initial cell density ratio on growth and competition between Navicula pelliculosa and Chlorella vulgaris[J]. South China Fisheries Science, 2021, 17(5): 18−25. doi: 10.12131/20200250
    [47]
    赵晓夏. 黄龙典型水环境条件下硅藻与钙华的相互影响[D]. 绵阳: 西南科技大学, 2022.

    Zhao Xiaoxia. The relationship between diatom and travertine in Huanglong typical water environment[D]. Mianyang: Southwest University of Science and Technology, 2022.
    [48]
    Coelho H, Vieira S, Serôdio J. Effects of desiccation on the photosynthetic activity of intertidal microphytobenthos biofilms as studied by optical methods[J]. Journal of Experimental Marine Biology and Ecology, 2009, 381(2): 98−104. doi: 10.1016/j.jembe.2009.09.013
    [49]
    Benyoucef I, Blandin E, Lerouxel A, et al. Microphytobenthos interannual variations in a north-European estuary (Loire estuary, France) detected by visible-infrared multispectral remote sensing[J]. Estuarine, Coastal and Shelf Science, 2014, 136: 43−52. doi: 10.1016/j.ecss.2013.11.007
    [50]
    张忍顺, 王雪瑜. 江苏省淤泥质海岸潮沟系统[J]. 地理学报, 1991, 46(2): 195−206.

    Zhang Renshun, Wang Xueyu. Tidal creek system on tidal mud flat of Jiangsu province[J]. Acta Geographica Sinica, 1991, 46(2): 195−206.
    [51]
    王青, 骆梦, 邱冬冬, 等. 滨海盐沼水文特征对盐地碱蓬定植过程的影响[J]. 自然资源学报, 2019, 34(12): 2569−2579. doi: 10.31497/zrzyxb.20191207

    Wang Qing, Luo Meng, Qiu Dongdong, et al. Effect of hydrological characteristics on the recruitment of Suaeda salsa in coastal salt marshes[J]. Journal of Natural Resources, 2019, 34(12): 2569−2579. doi: 10.31497/zrzyxb.20191207
    [52]
    van der Wal D, Wielemaker-van den Dool A, Herman P M J. Spatial synchrony in intertidal benthic algal biomass in temperate coastal and estuarine ecosystems[J]. Ecosystems, 2010, 13(2): 338−351. doi: 10.1007/s10021-010-9322-9
    [53]
    Ribeiro L, Brotas V, Rincé Y, et al. Structure and diversity of intertidal benthic diatom assemblages in contrasting shores: a case study from the Tagus estuary[J]. Journal of Phycology, 2013, 49(2): 258−270. doi: 10.1111/jpy.12031
    [54]
    葛嘉欣. 黄河三角洲典型潮沟形态特征对潮滩植被和土壤空间分布的影响[D]. 烟台: 鲁东大学, 2023.

    Ge Jiaxin. Influence of typical tidal creek morphological characteristics on the spatial distribution of tidal flats vegetation and soil in the Yellow River Delta[R]. Yantai: Ludong University, 2023.
    [55]
    Vu H D, Buck J, Wieski K, et al. Crab driven tidal creek formation in sinking salt marshes[C]//Proceedings of the 96th ESA Annual Convention 2011. 2011. (查阅网上资料, 未找到对应的出版信息, 请确认)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views (6) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return