Citation: | Wang Yujie,Liu Yina,Zhou Xijie, et al. Physiological responses of two scleractinian coral species to elevated exposure of suspended particle matter[J]. Haiyang Xuebao,2025, 47(x):1–10 |
[1] |
Jompa J, McCook L J. The effects of nutrients and herbivory on competition between a hard coral (Porites cylindrica) and a brown alga (Lobophora variegata)[J]. Limnology and Oceanography, 2002, 47(2): 527−534. doi: 10.4319/lo.2002.47.2.0527
|
[2] |
Rinkevich B, Loya Y. Does light enhance calcification in hermatypic corals?[J]. Marine Biology, 1984, 80(1): 1−6. doi: 10.1007/BF00393120
|
[3] |
Rinkevich B, Loya Y. Coral illumination through an optic glass-fiber: incorporation of 14C photosynthates[J]. Marine Biology, 1984, 80(1): 7−15. doi: 10.1007/BF00393121
|
[4] |
Spalding M D, Grenfell A M. New estimates of global and regional coral reef areas[J]. Coral Reefs, 1997, 16(4): 225−230. doi: 10.1007/s003380050078
|
[5] |
Browne N K, Smithers S G, Perry C T. Coral reefs of the turbid inner-shelf of the Great Barrier Reef, Australia: an environmental and geomorphic perspective on their occurrence, composition and growth[J]. Earth-Science Reviews, 2012, 115(1/2): 1−20.
|
[6] |
Lawrence D, Dagg M J, Liu Hongbin, et al. Wind events and benthic-pelagic coupling in a shallow subtropical bay in Florida[J]. Marine Ecology Progress Series, 2004, 266: 1−13. doi: 10.3354/meps266001
|
[7] |
Lou Jing, Ridd P V. Reply to comments by J. P. Xu regarding ''wave-current bottom shear stresses and sediment resuspension in cleveland bay, Australia” by Lou and Ridd[J]. Coastal Engineering, 1998, 33(1): 65−67. doi: 10.1016/S0378-3839(97)00036-7
|
[8] |
Larcombe P, Costen A, Woolfe K J. The hydrodynamic and sedimentary setting of nearshore coral reefs, central Great Barrier Reef shelf, Australia: Paluma Shoals, a case study[J]. Sedimentology, 2001, 48(4): 811−835. doi: 10.1046/j.1365-3091.2001.00396.x
|
[9] |
Wolanski E, Gibbs R. Resuspension and clearing of dredge spoils after dredging, Cleveland Bay, Australia[J]. Water Environment Research, 1992, 64(7): 910−914. doi: 10.2175/WER.64.7.9
|
[10] |
Orpin A R, Ridd P V, Thomas S, et al. Natural turbidity variability and weather forecasts in risk management of anthropogenic sediment discharge near sensitive environments[J]. Marine Pollution Bulletin, 2004, 49(7/8): 602−612.
|
[11] |
Thomas S, Ridd P V, Day G. Turbidity regimes over fringing coral reefs near a mining site at Lihir Island, Papua New Guinea[J]. Marine Pollution Bulletin, 2003, 46(8): 1006−1014. doi: 10.1016/S0025-326X(03)00122-X
|
[12] |
Jones R, Bessell-Browne P, Fisher R, et al. Assessing the impacts of sediments from dredging on corals[J]. Marine Pollution Bulletin, 2016, 102(1): 9−29. doi: 10.1016/j.marpolbul.2015.10.049
|
[13] |
Cunning R, Silverstein R N, Barnes B B, et al. Extensive coral mortality and critical habitat loss following dredging and their association with remotely-sensed sediment plumes[J]. Marine Pollution Bulletin, 2019, 145: 185−199. doi: 10.1016/j.marpolbul.2019.05.027
|
[14] |
Hall T E, Freedman A S, De Roos A M, et al. Stony coral populations are more sensitive to changes in vital rates in disturbed environments[J]. Ecological Applications, 2021, 31(2): e02234. doi: 10.1002/eap.2234
|
[15] |
Tebbett S B, Bellwood D R. Algal turf sediments on coral reefs: what's known and what's next[J]. Marine Pollution Bulletin, 2019, 149: 110542. doi: 10.1016/j.marpolbul.2019.110542
|
[16] |
Jordán-Garza A G, González-Gándara C, Salas-Pérez J J, et al. Coral assemblages are structured along a turbidity gradient on the Southwestern Gulf of Mexico, Veracruz[J]. Continental Shelf Research, 2017, 138: 32−40. doi: 10.1016/j.csr.2017.03.002
|
[17] |
Richardson L E, Graham N A J, Hoey A S. Coral species composition drives key ecosystem function on coral reefs[J]. Proceedings of the Royal Society B: Biological Sciences, 2020, 287(1921): 20192214. doi: 10.1098/rspb.2019.2214
|
[18] |
Hsieh H, Wei Nuwei, Lu Yilin, et al. Unexpectedly high coral coverage in Chinwan Inner Bay, Pescadores: a proposed site for a Marine Protection Area[J]. Coral Reefs, 2001, 20(3): 316−317. doi: 10.1007/s003380100169
|
[19] |
Anthony K R N. Enhanced energy status of corals on coastal, high-turbidity reefs[J]. Marine Ecology Progress Series, 2006, 319: 111−116. doi: 10.3354/meps319111
|
[20] |
Morgan K M, Perry C T, Smithers S G, et al. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings[J]. Scientific Reports, 2016, 6: 29616. doi: 10.1038/srep29616
|
[21] |
Stafford-Smith M G. Sediment-rejection efficiency of 22 species of Australian scleractinian corals[J]. Marine Biology, 1993, 115(2): 229−243. doi: 10.1007/BF00346340
|
[22] |
Erftemeijer P L A, Riegl B, Hoeksema B W, et al. Environmental impacts of dredging and other sediment disturbances on corals: a review[J]. Marine Pollution Bulletin, 2012, 64(9): 1737−1765. doi: 10.1016/j.marpolbul.2012.05.008
|
[23] |
Zheng Xinqing, Wang Qifang, Dong Xu, et al. A new perspective of nutrient management of subtropical coastal stress-tolerant scleractinian coral communities[J]. Continental Shelf Research, 2021, 220: 104405. doi: 10.1016/j.csr.2021.104405
|
[24] |
梁姗姗, 王建佳, 黄锦树, 等. 近岸多源环境因素影响下珊瑚群落的生态脆弱性评价研究[J]. 生态环境学报, 2021, 30(12): 2360−2369.
Liang Shanshan, Wang Jianjia, Huang Jinshu, et al. Ecological vulnerability assessment of coral community under the impact of multiple environmental factors[J]. Ecology and Environmental Sciences, 2021, 30(12): 2360−2369.
|
[25] |
Jeffrey S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochemie und Physiologie der Pflanzen, 1975, 167(2): 191−194. doi: 10.1016/S0015-3796(17)30778-3
|
[26] |
Beliaeff B, Burgeot T. Integrated biomarker response: a useful tool for ecological risk assessment[J]. Environmental Toxicology and Chemistry, 2002, 21(6): 1316−1322. doi: 10.1002/etc.5620210629
|
[27] |
Roth M S, Latz M I, Goericke R, et al. Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation[J]. Journal of Experimental Biology, 2010, 213(21): 3644−3655. doi: 10.1242/jeb.040881
|
[28] |
Hennige S J, Smith D J, Perkins R, et al. Photoacclimation, growth and distribution of massive coral species in clear and turbid waters[J]. Marine Ecology Progress Series, 2008, 369: 77−88. doi: 10.3354/meps07612
|
[29] |
Falter J L, Lowe R J, Zhang Zhenlin, et al. Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology[J]. PLoS One, 2017, 8(1): e53303.
|
[30] |
Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42(1): 313−349. doi: 10.1146/annurev.pp.42.060191.001525
|
[31] |
周洁, 施祺, 余克服. 叶绿素荧光技术在珊瑚礁研究中的应用[J]. 热带地理, 2011, 31(2): 223−229. doi: 10.3969/j.issn.1001-5221.2011.02.018
Zhou Jie, Shi Qi, Yu Kefu. Application of chlorophyll fluorescence technique in the study of coral reefs[J]. Tropical Geography, 2011, 31(2): 223−229. doi: 10.3969/j.issn.1001-5221.2011.02.018
|
[32] |
邢帅, 谭烨辉, 周林滨, 等. 水体浑浊度对不同造礁石珊瑚种类共生虫黄藻的影响[J]. 科学通报, 2012, 57(5): 348−354. doi: 10.1360/972011-1184
Xing Shuai, Tan Yehui, Zhou Linbin, et al. Effects of water turbidity on the symbiotic zooxanthella of hermatypic corals[J]. Chinese Science Bulletin, 2012, 57(5): 348−354. doi: 10.1360/972011-1184
|
[33] |
Wang Qifang, Zhou Xijie, Wang Jianjia, et al. Heterotrophy confers corals with resistance but limits their range expansion: a case of marginal coral communities[J]. Ecosystem Health and Sustainability, 2024, 10: 0246. doi: 10.34133/ehs.0246
|
[34] |
罗勇, 俞晓磊, 黄晖. 悬浮物对造礁石珊瑚营养方式的影响及其适应性研究进展[J]. 生态学报, 2021, 41(21): 8331−8340.
Luo Yong, Yu Xiaolei, Huang Hui. Effect of suspended sediment on the nutritional mode of scleractinian corals and their adaptability: state of knowledge and research[J]. Acta Ecologica Sinica, 2021, 41(21): 8331−8340.
|
[35] |
Warner M, Chilcoat G, McFarland F, et al. Seasonal fluctuations in the photosynthetic capacity of photosystem II in symbiotic dinoflagellates in the Caribbean reef-building coral Montastraea[J]. Marine Biology, 2002, 141(1): 31−38. doi: 10.1007/s00227-002-0807-8
|
[36] |
Piniak G A. Effects of two sediment types on the fluorescence yield of two Hawaiian scleractinian corals[J]. Marine Environmental Research, 2007, 64(4): 456−468. doi: 10.1016/j.marenvres.2007.04.001
|
[37] |
Flores F, Hoogenboom M O, Smith L D, et al. Chronic exposure of corals to fine sediments: Lethal and sub-lethal impacts[J]. PLoS One, 2017, 7(5): e37795.
|
[38] |
Browne N K, Precht E, Last K S, et al. Photo-physiological costs associated with acute sediment stress events in three near-shore turbid water corals[J]. Marine Ecology Progress Series, 2014, 502: 129−143. doi: 10.3354/meps10714
|
[39] |
Browne N K, Tay J, Todd P A. Recreating pulsed turbidity events to determine coral–sediment thresholds for active management[J]. Journal of Experimental Marine Biology and Ecology, 2015, 466: 98−109. doi: 10.1016/j.jembe.2015.02.010
|
[40] |
Done T J. Patterns in the distribution of coral communities across the central Great Barrier Reef[J]. Coral Reefs, 1982, 1(2): 95−107. doi: 10.1007/BF00301691
|
[41] |
McCloskey L R, Muscatine L. Production and respiration in the Red Sea coral Stylophora pistillata as a function of depth[J]. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1984, 222(1227): 215−230.
|
[42] |
Shick J M, Lesser M P, Dunlap W C, et al. Depth-dependent responses to solar ultraviolet radiation and oxidative stress in the zooxanthellate coral Acropora microphthalma[J]. Marine Biology, 1995, 122(1): 41−51. doi: 10.1007/BF00349276
|
[43] |
Brown B E, Dunne R P, Ambarsari I, et al. Seasonal fluctuations in environmental factors and variations in symbiotic algae and chlorophyll pigments in four Indo-Pacific coral species[J]. Marine Ecology Progress Series, 1999, 191: 53−69. doi: 10.3354/meps191053
|
[44] |
Dustan P. Depth-dependent photoadaption by zooxanthellae of the reef coral Montastrea annularis[J]. Marine Biology, 1982, 68(3): 253−264. doi: 10.1007/BF00409592
|
[45] |
Cohen I, Dubinsky Z. Long term photoacclimation responses of the coral Stylophora pistillata to reciprocal deep to shallow transplantation: photosynthesis and calcification[J]. Frontiers in Marine Science, 2015, 2: 45.
|
[46] |
Winters G, Beer S, Zvi B B, et al. Spatial and temporal photoacclimation of Stylophora pistillata: zooxanthella size, pigmentation, location and clade[J]. Marine Ecology Progress Series, 2009, 384: 107−119. doi: 10.3354/meps08036
|
[47] |
Drew E A. The biology and physiology of alga-invertebrate symbioses. I. Carbon fixation in Cassiopea sp. at aldabra atoll[J]. Journal of Experimental Marine Biology and Ecology, 1972, 9(1): 65−69. doi: 10.1016/0022-0981(72)90007-X
|