Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Wang Hui,Huang Rui,Zhang Wei, et al. Study on the impact of upstream discharge on saltwater intrusion distance in the Yangtze Estuary[J]. Haiyang Xuebao,2025, 47(x):1–11
Citation: Wang Hui,Huang Rui,Zhang Wei, et al. Study on the impact of upstream discharge on saltwater intrusion distance in the Yangtze Estuary[J]. Haiyang Xuebao,2025, 47(x):1–11

Study on the impact of upstream discharge on saltwater intrusion distance in the Yangtze Estuary

  • Received Date: 2024-11-06
    Available Online: 2025-01-09
  • Saline water intrusion at the Yangtze River Estuary severely affects the security of upstream water supply, agricultural irrigation, and ecological environmental health. The distance of saline water intrusion upstream, influenced by the interaction between runoff and tidal forces, has received considerable attention. However, research on the extent of this intrusion under the influence of the runoff-tide interaction remains insufficient.This paper establishes a three-dimensional hydrodynamic and salinity mathematical model of the Yangtze River Estuary using the MIKE 3 hydrodynamic model. The model is validated against field measurements of water levels, flow velocities, flow directions, and salinity from the Yangtze River Estuary in 2016. The validation results show a good agreement between the simulated and measured values, indicating that the three-dimensional hydrodynamic and salinity mathematical model of the Yangtze River Estuary established in this study can effectively simulate the hydrodynamic and salinity characteristics in the vicinity of the estuary.To investigate the impact of upstream runoff on the extent of saltwater intrusion in the Yangtze River Estuary, this study sets up eight different flow rates ranging from 15,000 to 50,000 m3/s for the upstream section of the Yangtze River Estuary. The simulations focus on the effects of these varying upstream flow rates on the saltwater intrusion distances in three navigation channels: the South Branch-North Port, the South Branch-South Port-North Channel, and the South Branch-South Port-South Channel. The simulation results indicate that the degree of saltwater intrusion in all three channels is significantly dependent on tidal dynamics. During spring tides, when tidal forces are stronger, both the seawater backflow into the North Port and the saltwater intrusion into the North Branch are more pronounced compared to neap tides, resulting in longer saltwater intrusion distances overall during spring tides. When the upstream discharge is low, backflow from the North Branch also contributes to increased saltwater intrusion distances.The vertical distribution of salinity and stratification phenomena in the three channels under different flow conditions were also analyzed, and the relationships between upstream flow rates and the distances of saltwater intrusion in the three channels were established. The findings of this study provide valuable references for research on "salinity control and freshwater supplementation" in the Yangtze River Estuary, as well as studies on material transport.
  • loading
  • [1]
    Woodroffe C D, Nicholls R J, Saito Y, et al. Landscape variability and the response of Asian megadeltas to environmental change[M]//Harvey N. Global Change and Integrated Coastal Management: The Asia-Pacific Region. Dordrecht: Springer, 2006: 277−314.
    [2]
    王玉琦, 李铖, 刘安琪, 等. 2022年长江口夏季咸潮入侵及影响机制研究[J]. 人民长江, 2023, 54(4): 7−14.

    Wang Yuqi, Li Cheng, Liu Anqi, et al. Dynamic mechanism of saltwater intrusion at Yangtze River estuary in summer, 2022[J]. Yangtze River, 2023, 54(4): 7−14.
    [3]
    White I, Falkland T. Management of freshwater lenses on small Pacific islands[J]. Hydrogeology Journal, 2010, 18(1): 227−246. doi: 10.1007/s10040-009-0525-0
    [4]
    Xu Ting. Study on hydrodynamics and salinity environment after a large-scale reclamation project in the Oujiang River Estuary[M]//Zhang Lei, Xie Liquan. Modeling and Computation in Engineering III. London: CRC Press, 2014. (查阅网上资料, 未找到本条文献页码, 请确认)
    [5]
    Weston N B, Dixon R E, Joye S B. Ramifications of increased salinity in tidal freshwater sediments: geochemistry and microbial pathways of organic matter mineralization[J]. Journal of Geophysical Research: Biogeosciences, 2006, 111(G1): G01009.
    [6]
    黄睿, 张庆河, 张金凤, 等. 双层横向振荡格栅紊流特性的实验研究[J]. 水动力学研究与进展, 2022, 37(2): 244−251.

    Huang Rui, Zhang Qinghe, Zhang Jinfeng, et al. Experimental research on turbulence characteristics of double layer transverse oscillating grid[J]. Chinese Journal of Hydrodynamics, 2022, 37(2): 244−251.
    [7]
    吴天亮, 戴志军, 王日明, 等. 淹水时长与盐度对桐花树胚胎萌根与生长发育过程的影响研究[J]. 海洋学报, 2023, 45(11): 101−111.

    Wu Tianliang, Dai Zhijun, Wang Riming, et al. The impacts of submergence duration and salinity on the germination and growth process of Aegiceras corniculatum radicles[J]. Haiyang Xuebao, 2023, 45(11): 101−111.
    [8]
    Yuan Yirang, Liang Dong, Rui Hongxing. The numerical simulation and analysis of three-dimensional seawater intrusion and protection projects in porous media[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52(1): 92−107. doi: 10.1007/s11433-009-0013-5
    [9]
    沈焕庭, 茅志昌, 朱建荣. 长江河口盐水入侵[M]. 北京: 海洋出版社, 2003.

    Shen Huanting, Mao Zhichang, Zhu Jianrong. Saltwater Intrusion in the Changjiang Estuary[M]. Beijing: China Ocean Press, 2003.
    [10]
    Sun Zhaohua, Fan Jiewei, Yan Xin, et al. Analysis of critical river discharge for saltwater intrusion control in the upper South Branch of the Yangtze River Estuary[J]. Journal of Geographical Sciences, 2020, 30(5): 823−842. doi: 10.1007/s11442-020-1757-0
    [11]
    乔红杰, 刘大伟, 闻卫东, 等. 2022年长江口北支咸水倒灌传播特征分析[J]. 人民长江, 2023, 54(2): 63−69.

    Qiao Hongjie, Liu Dawei, Wen Weidong, et al. Diffusion characteristics of saltwater intrusion in North Branch of Yangtze River Estuary in 2022[J]. Yangtze River, 2023, 54(2): 63−69.
    [12]
    Eslami S, Hoekstra P, Minderhoud P S J, et al. Projections of salt intrusion in a mega-delta under climatic and anthropogenic stressors[J]. Communications Earth & Environment, 2021, 2(1): 142.
    [13]
    Mahmuduzzaman M, Ahmed Z U, Nuruzzaman A K M, et al. Causes of salinity intrusion in coastal belt of Bangladesh[J]. International Journal of Plant Research, 2014, 4(4A): 8−13.
    [14]
    Rice K C, Hong Bo, Shen Jian. Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA[J]. Journal of Environmental Management, 2012, 111: 61−69.
    [15]
    Vijith V, Sundar D, Shetye S R. Time-dependence of salinity in monsoonal estuaries[J]. Estuarine, Coastal and Shelf Science, 2009, 85(4): 601−608. doi: 10.1016/j.ecss.2009.10.003
    [16]
    赵雪峰, 尹小玲. 潮汐强度对河口盐水入侵影响的数值模型研究[J]. 水动力学研究与进展, 2017, 32(6): 756−763.

    Zhao Xuefeng, Yin Xiaoling. Numerical model for effect of tide strength on estuarine salt intrusion[J]. Chinese Journal of Hydrodynamics, 2017, 32(6): 756−763.
    [17]
    Wang Jie, Kuang Cuiping, Chen Kuo, et al. Wave–current interaction by Typhoon Fongwong on saline water intrusion and vertical stratification in the Yangtze River Estuary[J]. Estuarine, Coastal and Shelf Science, 2022, 279: 108138. doi: 10.1016/j.ecss.2022.108138
    [18]
    鲍道阳, 朱建荣. 近60年来长江河口河势变化及其对水动力和盐水入侵的影响Ⅲ. 盐水入侵[J]. 海洋学报, 2017, 2017,39(4): 1−15.

    Bao Daoyang, Zhu Jianrong. The effects of river regime changes in the Changjiang Estuary on hydrodynamics and salinity intrusion in the past 60 years Ⅲ. Saltwater intrusion[J]. Haiyang Xuebao, 2017, 2017,39(4): 1−15.
    [19]
    Xu Zhi, Ma Jing, Wang Hao, et al. River discharge and saltwater intrusion level study of Yangtze River Estuary, China[J]. Water, 2018, 10(6): 683. doi: 10.3390/w10060683
    [20]
    仇威, 朱建荣. 持续强北风天气下长江口盐水入侵对径流量的响应[J]. 华东师范大学学报(自然科学版), 2023(3): 132−146.

    Qiu Wei, Zhu Jianrong. Responses of saltwater intrusion in the Changjiang Estuary to various river discharge under a persistent and strong northerly wind[J]. Journal of East China Normal University (Natural Science), 2023(3): 132−146.
    [21]
    仇威. UnFECOM模式在长江河口盐水入侵数值模拟中的应用[D]. 上海: 华东师范大学, 2023.

    Qiu Wei. Application of UnFECOM model in numerical simulation of saltwater intrusion in the Changjiang Estuary[D]. Shanghai: East China Normal University, 2023.
    [22]
    侯成程. 长江潮流界和潮区界以及河口盐水入侵对径流变化响应的数值研究[D]. 上海: 华东师范大学, 2013.

    Hou Chengcheng. Numerical study on the tidal current limit and tidal limit in the Changjiang River and the Response of saltwater intrusion in the Changjiang Estuary to the river discharge change[D]. Shanghai: East China Normal University, 2013.
    [23]
    朱建荣, 吴辉, 李路, 等. 极端干旱水文年(2006)中长江河口的盐水入侵[J]. 华东师范大学学报(自然科学版), 2010(4): 1−6,25.

    Zhu Jianrong, Wu Hui, Li Lu, et al. Saltwater intrusion in the Changjiang Estuary in the extremely drought hydrological year 2006[J]. Journal of East China Normal University (Natural Science), 2010(4): 1−6,25.
    [24]
    Dai Zhijun, Chu Ao, Stive M, et al. Unusual salinity conditions in the Yangtze Estuary in 2006: impacts of an extreme drought or of the Three Gorges Dam?[J]. Ambio, 2011, 40(5): 496−505. doi: 10.1007/s13280-011-0148-2
    [25]
    Chen Qing, Zhu Jianrong, Lyu Hanghang, et al. Impacts of topography change on saltwater intrusion over the past decade in the Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 2019, 231: 106469. doi: 10.1016/j.ecss.2019.106469
    [26]
    李林江, 朱建荣. 冬季北风风速对长江河口盐水入侵的影响[J]. 海洋学报, 2021, 43(10): 10−22.

    Li Linjiang, Zhu Jianrong. The effects of north wind speed in winter on saltwater intrusion in the Changjiang Estuary[J]. Haiyang Xuebao, 2021, 43(10): 10−22.
    [27]
    徐志, 戴会超, 高希超, 等. 长江口盐水入侵对径流变异和海平面变化的响应[J]. 水利水电科技进展, 2023, 43(3): 15−21.

    Xu Zhi, Dai Huichao, Gao Xichao, et al. Response of saltwater intrusion to runoff variability and sea level change in Yangtze River Estuary[J]. Advances in Science and Technology of Water Resources, 2023, 43(3): 15−21.
    [28]
    Kuang Cuiping, Chen Kuo, Wang Jie, et al. Responses of hydrodynamics and saline water intrusion to typhoon Fongwong in the North Branch of the Yangtze River Estuary[J]. Applied Sciences, 2021, 11(19): 8986. doi: 10.3390/app11198986
    [29]
    陈维, 匡翠萍, 顾杰, 等. 长江口盐水入侵对海平面上升的响应特征[J]. 水利水运工程学报, 2018(1): 58−65.

    Chen Wei, Kuang Cuiping, Gu Jie, et al. Responses of saline water intrusion to sea level rise in the Yangtze Estuary[J]. Hydro-Science and Engineering, 2018(1): 58−65.
    [30]
    王绍祥, 朱建荣. 不同潮型和风况下青草沙水库取水口盐水入侵来源[J]. 华东师范大学学报(自然科学版), 2015(4): 65−76.

    Wang Shaoxiang, Zhu Jianrong. Saltwater intrusion sources at the water intake of Qingcaosha reservoir in different tidal pattern and wind case[J]. Journal of East China Normal University (Natural Science), 2015(4): 65−76.
    [31]
    DHI. Mike 21 & Mike 3 flow model FM hydrodynamic and transport module scientific documentation[R]. Demark: DHI Water & Environment, 2009.
    [32]
    Murphy A H. Skill scores based on the mean square error and their relationships to the correlation coefficient[J]. Monthly Weather Review, 1988, 116(12): 2417−2424. doi: 10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
    [33]
    严鑫, 孙昭华, 谢翠松, 等. 基于经验模型的长江口南支上段压咸临界流量[J]. 地理学报, 2019, 74(5): 935−947. doi: 10.11821/dlxb201905008

    Yan Xin, Sun Zhaohua, Xie Cuisong, et al. Estimation of critical discharge for saltwater intrusion in the upper south branch of the Yangtze River Estuary using empirical models[J]. Acta Geographica Sinica, 2019, 74(5): 935−947. doi: 10.11821/dlxb201905008
    [34]
    朱建荣, 吴辉, 李路, 等. 极端干旱水文年(2006)中长江河口的盐水入侵[J]. 华东师范大学学报(自然科学版), 2010(4): 1−6, 25.

    Zhu Jianrong, Wu Hui, Li Lu, et al. Saltwater intrusion in the Changjiang Estuary in the extremely drought hydrological year 2006[J]. Journal of East China Normal University (Natural Science), 2010(4): 1−6, 25. (查阅网上资料, 本条文献与第23条重复, 请确认)
    [35]
    周春煦. 长江口盐水入侵特征及规律[J]. 长江科学院院报, 2018, 35(12): 28−33. doi: 10.11988/ckyyb.20170434

    Zhou Chunxu. Characteristic and Law of Saltwater Intrusion in Yangtze River Estuary[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(12): 28−33. doi: 10.11988/ckyyb.20170434
    [36]
    王雅君. 长江口北槽混合层化特征及其对悬沙输移的影响[D]. 上海: 华东师范大学, 2022.

    Wang Yajun. Characteristics of mixing and stratification and its influence on suspended sediment transport in the north passage of the Yangtze Estuary[D]. Shanghai: East China Normal University, 2022.
    [37]
    熊龙兵, 浦祥, 时钟, 等. 潮汐应变对长江口北槽枯季湍流混合与层化的影响[J]. 海洋工程, 2014, 32(4): 41−57.

    Xiong Longbing, Pu Xiang, Shi Zhong, et al. Effect of tidal straining on turbulent mixing and stratification in the dry season within the North Passage of the Changjiang River estuary[J]. The Ocean Engineering, 2014, 32(4): 41−57.
    [38]
    沈焕庭, 茅志昌, 顾玉亮. 东线南水北调工程对长江口咸水入侵影响及对策[J]. 长江流域资源与环境, 2002, 11(2): 150−154. doi: 10.3969/j.issn.1004-8227.2002.02.011

    Shen Huanting, Mao Zhichang, Gu Yuliang. Impact of south-north water transfer (east route) on saltwater intrusion in the Changjiang estuary with consideration of its countermeasures[J]. Resources and Environment in the Yangtze Basin, 2002, 11(2): 150−154. doi: 10.3969/j.issn.1004-8227.2002.02.011
    [39]
    顾玉亮, 吴守培, 乐勤. 北支盐水入侵对长江口水源地影响研究[J]. 人民长江, 2003, 34(4): 1−3,16. doi: 10.3969/j.issn.1001-4179.2003.04.001

    Gu Yuliang, Wu Shoupei, Le Qin. Impact of intruded saline water via north branch of the Yangtze river on water source areas in the estuary area[J]. Yangtze River, 2003, 34(4): 1−3,16. doi: 10.3969/j.issn.1001-4179.2003.04.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (50) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return