Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Huamin Zhou,Haidong Pan,Yuhan Yan, et al. Application of a modified tidal harmonic analysis method in the analysis of short-term tide levels offshore Zhejiang[J]. Haiyang Xuebao,2025, 47(x):1–12
Citation: Huamin Zhou,Haidong Pan,Yuhan Yan, et al. Application of a modified tidal harmonic analysis method in the analysis of short-term tide levels offshore Zhejiang[J]. Haiyang Xuebao,2025, 47(x):1–12

Application of a modified tidal harmonic analysis method in the analysis of short-term tide levels offshore Zhejiang

  • Received Date: 2024-09-03
  • Rev Recd Date: 2024-12-25
  • Available Online: 2025-01-22
  • Due to the limitations of the Rayleigh criterion, classical harmonic analysis (CHA) model requires half a year of data records to analyze the eight main tidal constituents, namely, M2, S2, N2, K2, K1, O1, P1, Q1. For short-term tidal records, the unresolved constituents typically rely on the ratio differences from nearby long-term tidal stations for estimation. However, there is a scarcity of publicly available long-term tidal data in the coastal areas of Zhejiang, which currently prevents the accurate extraction of the main constituents from short-term records. This paper introduces a modified harmonic analysis model, referred to as the Modified Harmonic Analysis model based on the Credo of Smoothness (MHACS). Based on the smooth functions established by the intrinsic connections between major constituents, it breaks through the Rayleigh criterion, significantly reducing the length of tidal records required, especially suitable for coastal areas with abundant short-term data. This algorithm was applied to the multi-island area of Zhejiang offshore, using tidal records shorter than 15 days. The results show that the harmonic constants of the eight main constituents at the Shipu station are very close to the results obtained by the CHA method, and the required data length is reduced from 8760 hours to 336 hours, which can be used to calculate characteristic parameters such as the theoretical depth datum. For analyzing the eight main constituents along the Zhejiang coast using MHACS, a minimum data length of 5 days is recommended.
  • loading
  • [1]
    方国洪, 郑文振, 陈宗镛, 等. 潮汐和潮流的分析和预报[M]. 北京: 海洋出版社, 1986.

    Fang Guohong, Zheng Wenzhen, Chen Zongyong, et al. Analysis and Prediction of Tides and Tidal Currents[M]. Beijing: China Ocean Press, 1986. (查阅网上资料, 未找到本条文献英文信息, 请确认)
    [2]
    黄祖珂, 黄磊. 潮汐原理与计算[M]. 青岛: 中国海洋大学出版社, 2005.

    Huang Zuke, Huang Lei. Tidal Theory and Calculation[M]. Qingdao: China Ocean University Press, 2005.
    [3]
    Doodson A T. Perturbations of harmonic tidal constants[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1924, 106(739): 513−526.
    [4]
    吕咸青, 潘海东, 王雨哲. 潮汐调和分析方法的回顾与展望[J]. 海洋科学, 2021, 45(11): 132−143.

    Lv Xianqing, Pan Haidong, Wang Yuzhe. Review and prospect of tidal harmonic analysis method[J]. Marine Sciences, 2021, 45(11): 132−143.
    [5]
    Godin G. The Analysis of Tides[M]. Toronto: University of Toronto Press, 1972.
    [6]
    徐晓庆, 方国洪, 王新怡, 等. 渤、黄、东海潮汐的相对导纳及N2, K2, P1 和Q1分潮的经验同潮图[J]. 海洋科学进展, 2011, 29(3): 293−306.

    Xu Xiaoqing, Fang Guohong, Wang Xinyi, et al. Relative tidal admittances and N2, K2, P1 and Q1 empirical cotidal charts in the Bohai, Yellow and East China Seas[J]. Advances in Marine Science, 2011, 29(3): 293−306.
    [7]
    徐晓武, 陈永平, 甘敏, 等. 基于非稳态调和分析和长短时记忆神经网络的河口潮位短期预报混合模型[J]. 海洋通报, 2022, 41(4): 401−410. doi: 10.11840/j.issn.1001-6392.2022.04.005

    Xu Xiaowu, Chen Yongping, Gan Min, et al. Hybrid model for short-term prediction of tide level in estuary based on LSTM and nonstationary harmonic analysis[J]. Marine Science Bulletin, 2022, 41(4): 401−410. doi: 10.11840/j.issn.1001-6392.2022.04.005
    [8]
    Pan Haidong, Sun Junchuan, Xu Tengfei, et al. Seasonal variations of tidal currents in the deep Timor Passage[J]. Frontiers in Marine Science, 2023, 10: 1135911. doi: 10.3389/fmars.2023.1135911
    [9]
    Pan Haidong, Xu Tengfei, Wei Zexun. A modified tidal harmonic analysis model for short-term water level observations[J]. Ocean Modelling, 2023, 186: 102251. doi: 10.1016/j.ocemod.2023.102251
    [10]
    Pan Haidong, Xu Tengfei, Wei Zexun. Improved tidal estimates from short water level records via the modified harmonic analysis model[J]. Ocean Modelling, 2024, 189: 102372. doi: 10.1016/j.ocemod.2024.102372
    [11]
    Pan Haidong, Sun Junchuan, Xu Tengfei, et al. Extraction of ocean tides in the Bohai Sea from GFO satellite altimeter via a modified tidal harmonic analysis algorithm[J]. Continental Shelf Research, 2024, 276: 105231. doi: 10.1016/j.csr.2024.105231
    [12]
    陈倩, 黄大吉, 章本照, 等. 浙江近海潮汐的特征[J]. 东海海洋, 2003, 21(2): 1−12.

    Chen Qian, Huang Daji, Zhang Benzhao, et al. The research of the tidal features in the coastal zone of Zhejiang Province[J]. Donghai Marine Science, 2003, 21(2): 1−12.
    [13]
    曹颖, 林炳尧. 杭州湾潮汐特性分析[J]. 浙江水利水电专科学校学报, 2000, 12(3): 14−16.

    Cao Ying, Lin Bingyao. Tidal characteristics of Hangzhou Bay[J]. Journal of Zhejiang Water Conservancy and Hydropower College, 2000, 12(3): 14−16.
    [14]
    Pawlowicz R, Beardsley B, Lentz S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers & Geosciences, 2002, 28(8): 929−937.
    [15]
    Munk W H, Cartwright D E. Tidal spectroscopy and prediction[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1966, 259(1105): 533−581. doi: 10.1098/rsta.1966.0024
    [16]
    Leffler K E, Jay D A. Enhancing tidal harmonic analysis: robust (hybrid L1/L2) solutions[J]. Continental Shelf Research, 2009, 29(1): 78−88. doi: 10.1016/j.csr.2008.04.011
    [17]
    Hoerl A E, Kennard R W. Ridge regression: biased estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55−67. doi: 10.1080/00401706.1970.10488634
    [18]
    Hoerl A E, Kennard R W. Ridge regression: applications to nonorthogonal problems[J]. Technometrics, 1970, 12(1): 69−82. doi: 10.1080/00401706.1970.10488635
    [19]
    Marquardt D W. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation[J]. Technometrics, 1970, 12(3): 591−612. doi: 10.1080/00401706.1970.10488699
    [20]
    Hart-Davis M G, Piccioni G, Dettmering D, et al. EOT20: a global ocean tide model from multi-mission satellite altimetry[J]. Earth System Science Data, 2021, 13(8): 3869−3884. doi: 10.5194/essd-13-3869-2021
    [21]
    Byun D S, Hart D E. A monthly tidal envelope classification for semidiurnal regimes in terms of the relative proportions of the S2, N2, and M2 constituents[J]. Ocean Science, 2020, 16(4): 965−977. doi: 10.5194/os-16-965-2020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(8)

    Article views (13) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return