Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Wang Yuhang,Zhou Yuanlong,Yu Zhou, et al. Design and implementation of a modular and reconfigurable underwater robot[J]. Haiyang Xuebao,2025, 47(x):1–10
Citation: Wang Yuhang,Zhou Yuanlong,Yu Zhou, et al. Design and implementation of a modular and reconfigurable underwater robot[J]. Haiyang Xuebao,2025, 47(x):1–10

Design and implementation of a modular and reconfigurable underwater robot

  • Received Date: 2024-12-08
  • Rev Recd Date: 2025-05-23
  • Available Online: 2025-06-23
  • To enable underwater robots to quickly adapt to various application scenarios, a modular and reconfigurable Unmanned Underwater Vehicle (UUV) was designed. The UUV employs rectangular modules as its basic components, achieving non-electrical-contact interconnection through wireless power and data transmission, thereby eliminating the need for traditional watertight connectors. The modules are categorized into control and extension types, allowing flexible combinations based on task requirements. A specialized slider and clasp structure facilitates rapid assembly and secure connections between modules. Module interconnection and expansion capabilities were validated through modular assembly tests, and underwater experiments confirmed the feasibility of inter-module communication and wireless power transmission. Wireless power transfer tests demonstrated stable voltage output in underwater environments, meeting operational requirements. Prototype underwater operation tests further validated the feasibility of the overall design. This modular, reconfigurable design offers extensive possibilities for flexible deployment and functional expansion of UUVs across various application scenarios.
  • loading
  • [1]
    李硕, 吴园涛, 李琛, 等. 水下机器人应用及展望[J]. 中国科学院院刊, 2022, 37(7): 910−920.

    Li Shuo, Wu Yuantao, Li Chen, et al. Application and prospect of unmanned underwater vehicle[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(7): 910−920.
    [2]
    吴凯强. 遥控无人潜水器在海洋水下作业中的应用[J]. 科学与财富, 2024(4): 202−204.

    Wu Kaiqiang. Application of remotely operated underwater vehicles in marine subsea operations[J]. Sciences & Wealth, 2024(4): 202−204. (查阅网上资料, 未找到文献翻译, 请确认)
    [3]
    武建国, 任志刚, 吕日恒. 模块化自主水下机器人开发与应用[J]. 海洋信息技术与应用, 2022, 37(1): 10−20. doi: 10.3969/j.issn.1005-1724.2022.01.002

    Wu Jianguo, Ren Zhigang, Lv Riheng. Development and application of modular autonomous underwater vehicle[J]. Journal of Marine Information Technology and Application, 2022, 37(1): 10−20. doi: 10.3969/j.issn.1005-1724.2022.01.002
    [4]
    李治洋, 郭威, 葛新. 模块化水下机器人控制系统设计[J]. 机械设计与制造, 2012(1): 36−38. doi: 10.3969/j.issn.1001-3997.2012.01.014

    Li Zhiyang, Guo Wei, Ge Xin. Control system design for ROV based on modularization[J]. Machinery Design & Manufacture, 2012(1): 36−38. doi: 10.3969/j.issn.1001-3997.2012.01.014
    [5]
    Hiller T, Steingrimsson A, Melvin R. Expanding the small AUV mission envelope; longer, deeper & more accurate[C]//2012 IEEE/OES autonomous underwater vehicles (AUV). Southampton: IEEE, 2012: 1−4.
    [6]
    Cruz N A, Matos A C. The MARES AUV, a modular autonomous robot for environment sampling[C]//OCEANS 2008. Quebec City: IEEE, 2008: 1−6.
    [7]
    Cruz N A, Matos A C, Ferreira B M. Modular building blocks for the development of AUVs — from MARES to TriMARES[C]//2013 IEEE International Underwater Technology Symposium (UT). Tokyo: IEEE, 2013: 1−8.
    [8]
    Tolstonogov A Y, Chemezov I A, Kolomeitsev A Y, et al. The modular approach for underwater vehicle design[C]//Global Oceans 2020: Singapore–U. S. Gulf Coast. Biloxi: IEEE, 2020: 1−7.
    [9]
    Tolstonogov A Y, Fries D, Storozhenko V A, et al. The Dagon system: a modular AUV for long-term monitoring and observation[C]//OCEANS 2021: San Diego - Porto. San Diego: IEEE, 2021: 1−9.
    [10]
    孟令帅, 林扬, 郑荣, 等. 模块化自主水下机器人的机械设计与实现[J]. 机器人, 2016, 38(4): 395−401.

    Meng Lingshuai, Lin Yang, Zheng Rong, et al. Mechanical design and implementation of a modular autonomous underwater vehicle[J]. Robot, 2016, 38(4): 395−401.
    [11]
    武建国, 任志刚, 吕日恒. 模块化自主水下机器人开发与应用[J]. 海洋信息技术与应用, 2022, 37(1): 10−20.

    Wu Jianguo, Ren Zhigang, Lv Riheng. Development and application of modular autonomous underwater vehicle[J]. Journal of Marine Information Technology and Application, 2022, 37(1): 10-20. (查阅网上资料, 本条文献与第3条文献重复, 请确认)
    [12]
    武建国, 陈凯, 忻加成, 等. 系列模块化自主水下机器人的研发及推广应用[J]. 中国科技成果, 2019, 20(19): 54−55, 70.

    Wu Jianguo, Chen Kai, Xin Jiacheng, et al. Development and application of a series of modular autonomous underwater vehicles[J]. China Science and Technology Achievements, 2019, 20(19): 54-55, 70. (查阅网上资料, 未找到文献翻译, 请确认)
    [13]
    Zhou Jing, Hu Sideng, Li Tiefeng, et al. Cubic marine robotics[J]. Nature Reviews Electrical Engineering, 2024, 1(3): 143−144. doi: 10.1038/s44287-024-00030-z
    [14]
    Wen Qingbin, Feng Rendong, An Xinyu, et al. Optimal design of an autonomous underwater helicopter's shape based on combinatorial optimization strategy[J]. Ocean Engineering, 2022, 266: 113015. doi: 10.1016/j.oceaneng.2022.113015
    [15]
    Hu Sijie, Feng Rendong, Wang Zhanglin, et al. Control system of the autonomous underwater helicopter for pipeline inspection[J]. Ocean Engineering, 2022, 266: 113190. doi: 10.1016/j.oceaneng.2022.113190
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(2)

    Article views (13) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return