Citation: | Hao Jiawen,Liu Huihui,Gao Zhiqiang, et al. Machine learning-based remote sensing retrieval model for MODIS chlorophyll-a concentration in adjacent waters of the Yellow River Estuary[J]. Haiyang Xuebao,2025, 47(x):1–14 |
[1] |
Falkowski P G, Barber R T, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production[J]. Science, 1998, 281(5374): 200−206. doi: 10.1126/science.281.5374.200
|
[2] |
Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237−240. doi: 10.1126/science.281.5374.237
|
[3] |
Hu Chuanmin, Feng Lian, Guan Qi. A machine learning approach to estimate surface chlorophyll a concentrations in global oceans from satellite measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 4590−4607. doi: 10.1109/TGRS.2020.3016473
|
[4] |
Dierssen H M. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17073−17078.
|
[5] |
潘应阳, 国巧真, 孙金华. 水体叶绿素a浓度遥感反演方法研究进展[J]. 测绘科学, 2017, 42(1): 43−48.
Pan Yingyang, Guo Qiaozhen, Sun Jinhua. Advances in remote sensing inversion method of chlorophyll a concentration[J]. Science of Surveying and Mapping, 2017, 42(1): 43−48.
|
[6] |
Nazeer M, Nichol J E. Development and application of a remote sensing-based Chlorophyll-a concentration prediction model for complex coastal waters of Hong Kong[J]. Journal of Hydrology, 2016, 532: 80−89. doi: 10.1016/j.jhydrol.2015.11.037
|
[7] |
D'Alimonte D, Zibordi G. Phytoplankton determination in an optically complex coastal region using a multilayer perceptron neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(12): 2861−2868. doi: 10.1109/TGRS.2003.817682
|
[8] |
Guan Qi, Feng Lian, Hou Xuejiao, et al. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations[J]. Remote Sensing of Environment, 2020, 246: 111890. doi: 10.1016/j.rse.2020.111890
|
[9] |
罗婕纯一, 秦龙君, 毛鹏, 等. 水质遥感监测的关键要素叶绿素a的反演算法研究进展[J]. 遥感技术与应用, 2021, 36(3): 473−488.
Luo Jiechunyi, Qin Longjun, Mao Peng, et al. Research progress in the retrieval algorithms for Chlorophyll-a, a key element of water quality monitoring by remote sensing[J]. Remote Sensing Technology and Application, 2021, 36(3): 473−488.
|
[10] |
张明慧, 苏华, 季博文. MODIS时序影像的福建近岸叶绿素a浓度反演[J]. 环境科学学报, 2018, 38(12): 4831−4839.
Zhang Minghui, Su Hua, Ji Bowen. Retrieving nearshore chlorophyll-a concentration using MODIS time-series images in the Fujian Province (China)[J]. Acta Scientiae Circumstantiae, 2018, 38(12): 4831−4839.
|
[11] |
滕越, 邹斌, 叶小敏. HY-1C卫星海岸带成像仪叶绿素a浓度反演研究[J]. 海洋学报, 2022, 44(5): 25−34.
Teng Yue, Zou Bin, Ye Xiaomin. Study on the chlorophyll a concentration retrieved from HY-1C satellite coastal zone imager data[J]. Haiyang Xuebao, 2022, 44(5): 25−34.
|
[12] |
Chen Jun, Quan Wenting, Wen Zhenhe, et al. An improved three-band semi-analytical algorithm for estimating chlorophyll-a concentration in highly turbid coastal waters: a case study of the Yellow River estuary, China[J]. Environmental Earth Sciences, 2013, 69(8): 2709−2719. doi: 10.1007/s12665-012-2093-1
|
[13] |
Chen Jun, Quan Wenting. An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery[J]. Environmental Monitoring and Assessment, 2013, 185(3): 2243−2255. doi: 10.1007/s10661-012-2705-y
|
[14] |
Hao Qiang, Chai Fei, Xiu Peng, et al. Spatial and temporal variation in chlorophyll a concentration in the Eastern China Seas based on a locally modified satellite dataset[J]. Estuarine, Coastal and Shelf Science, 2019, 220: 220−231. doi: 10.1016/j.ecss.2019.01.004
|
[15] |
王梦雪, 丁晓坤, 侯兴, 等. 渤海叶绿素a的时空分布及其影响因素[J]. 中国海洋大学学报, 2023, 53(9): 123−131.
Wang Mengxue, Ding Xiaokun, Hou Xing, et al. Temporal and spatial variations of chlorophyll a and their influencing factors in the Bohai Sea[J]. Periodical of Ocean University of China, 2023, 53(9): 123−131.
|
[16] |
Wang Jiru, Tang Jiakui, Wang Wuhua, et al. Quantitative retrieval of chlorophyll-a concentrations in the Bohai–Yellow sea using GOCI surface reflectance products[J]. Remote Sensing, 2023, 15(22): 5285. doi: 10.3390/rs15225285
|
[17] |
王晓霞, 汪健平, 王佳莹, 等. 基于CNN-SVR网络的黄渤海近岸海域叶绿素a浓度预测[J]. 海洋预报, 2024, 41(4): 77−87.
Wang Xiaoxia, WANG Jianping, WANG Jiaying, et al. Prediction of chlorophyll a concentration in nearshore waters of the Yellow and Bohai Seas based on CNN-SVR networks[J]. Marine Forecasts, 2024, 41(4): 77−87.
|
[18] |
Yao Lulu, Wang Xiaopeng, Zhang Jiahua, et al. Prediction of sea surface chlorophyll-a concentrations based on deep learning and time-series remote sensing data[J]. Remote Sensing, 2023, 15(18): 4486. doi: 10.3390/rs15184486
|
[19] |
李鹏. 黄河口及其邻近海域悬浮泥沙多尺度时空动态与驱动机制[D]. 上海: 华东师范大学, 2023.
Li Peng. Multi-scale spatiotemporal dynamics and driving mechanisms of suspended sediment in the Yellow River Estuary and its adjacent seas[D]. Shanghai: East China Normal University, 2023.
|
[20] |
骆永明. 中国海岸带可持续发展中的生态环境问题与海岸科学发展[J]. 中国科学院院刊, 2016, 31(10): 1133−1142.
Luo Yongming. Sustainability associated coastal eco-environmental problems and coastal science development in China[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10): 1133−1142.
|
[21] |
Lorenzen C J. Determination of chlorophyll and pheo‐pigments: spectrophotometric equations[J]. Limnology and Oceanography, 1967, 12(2): 343−346. doi: 10.4319/lo.1967.12.2.0343
|
[22] |
Cai Lina, Bu Juan, Tang Danling, et al. Geosynchronous satellite GF-4 observations of Chlorophyll-a distribution details in the Bohai Sea, China[J]. Sensors, 2020, 20(19): 5471. doi: 10.3390/s20195471
|
[23] |
O'Reilly J E, Maritorena S, Mitchell B G, et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research: Oceans, 1998, 103(C11): 24937−24953. doi: 10.1029/98JC02160
|
[24] |
王惠文, 孟洁. 多元线性回归的预测建模方法[J]. 北京航空航天大学学报, 2007, 33(4): 500−504.
Wang Huiwen, Meng Jie. Predictive modeling on multivariate linear regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(4): 500−504.
|
[25] |
Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273−297.
|
[26] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5−32. doi: 10.1023/A:1010933404324
|
[27] |
李明轩, 黎雷. 机器学习在水环境典型水质参数遥感反演中的应用[J]. 净水技术, 2024, 43(8): 45−53.
Li Mingxuan, Li Lei. Application of machine learning in remote sensing retrieval of typical water quality parameters in aquatic environments[J]. Water Purification Technology, 2024, 43(8): 45−53.
|
[28] |
张亭禄, 贺明霞. 基于人工神经网络的一类水域叶绿素-a浓度反演方法[J]. 遥感学报, 2002, 6(1): 40−44.
Zhang Tinglu, He Mingxia. A method to retrieve the oceanic chlorophyll-a concentrations in case I water based on artificial neural network[J]. Journal of Remote Sensing, 2002, 6(1): 40−44.
|
[29] |
何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121−1129,1137.
He Zhikun, Liu Guangbin, Zhao Xijing, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8): 1121−1129,1137.
|
[30] |
Seeger M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2): 69−106. doi: 10.1142/S0129065704001899
|
[31] |
Chen Tianqi, Guestrin C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785−794.
|
[32] |
傅春阳. 基于XGBoost模型的湖泊水体叶绿素a反演[D]. 阜新: 辽宁工程技术大学, 2023.
Fu Chunyang. Retrieval of Chlorophyll-a in Lake water based on XGBoost model[D]. Fuxin: Liaoning Technical University, 2023.
|
[33] |
袁伟皓, 王华, 夏玉宝, 等. 基于GAM模型的鄱阳湖叶绿素a与水质因子相关性分析[J]. 生态环境学报, 2021, 30(8): 1716−1723.
Yuan Weihao, Wang Hua, Xia Yubao, et al. Relationship of Chlorophyll A and water quality factors in Poyang Lake based on GAM model[J]. Ecology and Environmental Sciences, 2021, 30(8): 1716−1723.
|
[34] |
Kim Y H, Im J, Ha H K, et al. Machine learning approaches to coastal water quality monitoring using GOCI satellite data[J]. GIScience & Remote Sensing, 2014, 51(2): 158−174.
|
[35] |
张乃星, 任荣珠, 吴凤丛, 等. 渤海海峡冬季营养盐的分布特征及影响因素[J]. 海洋通报, 2011, 30(6): 607−614.
Zhang Naixing, Ren Rongzhu, Wu Fengcong, et al. Characteristics of vertical distribution and influence factors of the nutrients at Bohai Strait in winter[J]. Marine Science Bulletin, 2011, 30(6): 607−614.
|
[36] |
Wang Yibo, Sun Yanyu, Wang Caixia, et al. Net-phytoplankton community structure and its environmental correlations in central Bohai Sea and the Bohai Strait[J]. Aquatic Ecosystem Health & Management, 2019, 22(4): 481−493.
|
[37] |
王英, 张晶晶, 吕其明, 等. 调水调沙对黄河口近海浮游植物群落结构时空分布影响[J]. 海洋环境科学, 2021, 40(3): 369−378.
Wang Ying, Zhang Jingjing, Lv Qiming, et al. Effects of water and sediment regulation scheme on phytoplankton community and abundance in the Yellow River Estuary[J]. Marine Environmental Science, 2021, 40(3): 369−378.
|
[38] |
孟庆辉, 王林, 陈艳拢, 等. 2002—2021年渤海叶绿素a浓度变化及环境响应分析[J]. 中国环境监测, 2022, 38(6): 228−236.
Meng Qinghui, Wang Lin, Chen Yanlong, et al. Change of Chlorophyll a concentration and its environmental response in the Bohai Sea from 2002 to 2021[J]. Environmental Monitoring in China, 2022, 38(6): 228−236.
|
[39] |
赵娜, 王霄鹏, 李咏沙, 等. 黄渤海海域叶绿素a浓度时空特征分布及影响因子分析[J]. 科学技术与工程, 2020, 20(17): 7101−7107.
Zhao Na, Wang Xiaopeng, Li Yongsha, et al. Temporal-spatial distribution of chlorophyll-a and impacts of environmental factors in the Bohai Sea and Yellow Sea[J]. Science Technology and Engineering, 2020, 20(17): 7101−7107.
|
[40] |
Shahriari B, Swersky K, Wang Ziyu, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148−175. doi: 10.1109/JPROC.2015.2494218
|
[41] |
Wang Yueqi, Liu Dongyan, Tang Danling. Application of a generalized additive model (GAM) for estimating chlorophyll-a concentration from MODIS data in the Bohai and Yellow Seas, China[J]. International Journal of Remote Sensing, 2017, 38(3): 639−661. doi: 10.1080/01431161.2016.1268733
|
[42] |
Liang Wen, Wang Yun, Liu Sumei, et al. Nutrient dynamics and coupling with biological processes and physical conditions in the Bohai Sea[J]. Frontiers in Marine Science, 2022, 9: 1025502. doi: 10.3389/fmars.2022.1025502
|
[43] |
Liang Wen, Wang Yan, Mu Jinglong, et al. Nutrient changes in the Bohai Sea over the past two decades[J]. Science of the Total Environment, 2023, 903: 166696. doi: 10.1016/j.scitotenv.2023.166696
|