Citation: | Zhou Yupeng,Xiao Zunyong,Chen Jinlian, et al. The difference in thermal tolerance between Acropora muricata and Acropora hyacinthus[J]. Haiyang Xuebao,2025, 47(x):1–11 |
[1] |
Spalding M, Ravilious C, Green E P. World atlas of coral reefs[M]. Bethesda: University of California Press, 2003.
|
[2] |
Bellwood D R, Streit R P, Brandl S J, et al. The meaning of the term 'function' in ecology: a coral reef perspective[J]. Functional Ecology, 2019, 33(6): 948−961. doi: 10.1111/1365-2435.13265
|
[3] |
Reaser J K, Pomerance R, Thomas P O. Coral bleaching and global climate change: scientitic findings and policy recommendations[J]. Conservation Biology, 2000, 14(5): 1500−1511. doi: 10.1046/j.1523-1739.2000.99145.x
|
[4] |
Hughes T P, Kerry J T, Álvarez-Noriega M, et al. Global warming and recurrent mass bleaching of corals[J]. Nature, 2017, 543(7645): 373−377. doi: 10.1038/nature21707
|
[5] |
Reimer J D, Peixoto R S, Davies S W, et al. The fourth global coral bleaching event: where do we go from here?[J]. Coral Reefs, 2024, 43(4): 1121−1125. doi: 10.1007/s00338-024-02504-w
|
[6] |
Eakin C M, Sweatman H P A, Brainard R E. The 2014-2017 global-scale coral bleaching event: insights and impacts[J]. Coral Reefs, 2019, 38: 539−545. doi: 10.1007/s00338-019-01844-2
|
[7] |
Hoegh-Guldberg O, Kennedy E V, Beyer H L, et al. Securing a long-term future for coral reefs[J]. Trends in Ecology & Evolution, 2018, 33(12): 936−944.
|
[8] |
Hughes T P, Anderson K D, Connolly S R, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene[J]. Science, 2018, 359(6371): 80−83. doi: 10.1126/science.aan8048
|
[9] |
Hooidonk R V, Maynard J, Grimsditch G, et al. Projections of future coral bleaching conditions using IPCC CMIP6 models: climate policy implications, management applications, and regional seas summaries[R]. Nairobi, Kenya: United Nations Environment Programme, 2020.
|
[10] |
刘旭. 造礁石珊瑚对温度胁迫的响应机制研究[D]. 南宁: 广西大学, 2020.
Liu Xu. Responsive mechanism of reef-building coral rocks to temperature stress[D]. Nanning: Guangxi University, 2020.
|
[11] |
蒙林庆, 黄雯, 阳恩广, 等. 高温白化事件可提高涠洲岛澄黄滨珊瑚(Porites Lutea)的耐热性[J]. 海洋学报, 2022, 44(8): 87−96. doi: 10.12284/j.issn.0253-4193.2022.8.hyxb202208009
Meng Linqing, Huang Wen, Yang Enguang, et al. High temperature bleaching events can increase thermal tolerance of Porites lutea in the Weizhou Island[J]. Haiyang Xuebao, 2022, 44(8): 87−96. doi: 10.12284/j.issn.0253-4193.2022.8.hyxb202208009
|
[12] |
Huang Wen, Xiao Zunyong, Liu Xu, et al. Short-term thermal acclimation improved the thermal tolerance of three species of scleractinian corals in the South China Sea[J]. Journal of Sea Research, 2024, 199: 102505. doi: 10.1016/j.seares.2024.102505
|
[13] |
Jin Y K, Lundgren P, Lutz A, et al. Genetic markers for antioxidant capacity in a reef-building coral[J]. Science Advances, 2016, 2(5): e1500842. doi: 10.1126/sciadv.1500842
|
[14] |
Marshall P A, Baird A H. Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa[J]. Coral Reefs, 2000, 19(2): 155−163. doi: 10.1007/s003380000086
|
[15] |
Muir P R, Done T, Aguirre J D. High regional and intrageneric variation in susceptibility to mass bleaching in Indo-Pacific coral species[J]. Global Ecology and Biogeography, 2021, 30(9): 1889−1898. doi: 10.1111/geb.13353
|
[16] |
张浴阳, 刘骋跃, 王丰国, 等. 典型近岸退化珊瑚礁的成功修复案例——蜈支洲珊瑚覆盖率的恢复[J]. 应用海洋学学报, 2021, 40(1): 26−33.
Zhang Yuyang, Liu Chengyue, Wang Fengguo, et al. Successful restoration of typical degraded coastal coral reefs — a restoration of coral coverage at Wuzhizhou Island[J]. Journal of Applied Oceanography, 2021, 40(1): 26−33.
|
[17] |
Williams S L, Sur C, Janetski N, et al. Large-scale coral reef rehabilitation after blast fishing in Indonesia[J]. Restoration Ecology, 2019, 27(2): 447−456. doi: 10.1111/rec.12866
|
[18] |
Bayraktarov E, Banaszak A T, Maya P M, et al. Coral reef restoration efforts in Latin American countries and territories[J]. PLoS One, 2020, 15(8): e0228477. doi: 10.1371/journal.pone.0228477
|
[19] |
Morand G, Dixon S, Le Berre T. Identifying key factors for coral survival in reef restoration projects using deep learning[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32(11): 1758−1773. doi: 10.1002/aqc.3878
|
[20] |
Okubo N. Insights into coral restoration projects in Japan[J]. Ocean & Coastal Management, 2023, 232: 106371.
|
[21] |
王欣, 高霆炜, 陈骁, 等. 涠洲岛园艺式珊瑚苗圃的架设与移植[J]. 广西科学, 2017, 24(5): 462−467.
Wang Xin, Gao Tingwei, Chen Xiao, et al. The construction and transplantation of coral gardening nursery in Weizhou Island[J]. Guangxi Sciences, 2017, 24(5): 462−467.
|
[22] |
Harithsa S, Raghukumar C, Dalal S G. Stress response of two coral species in the Kavaratti atoll of the Lakshadweep Archipelago, India[J]. Coral Reefs, 2005, 24: 463−474. doi: 10.1007/s00338-005-0008-2
|
[23] |
李淑, 余克服, 陈天然, 等. 在细胞水平上对高温珊瑚白化的初步研究[J]. 热带海洋学报, 2011, 30(2): 33−38.
Li Shu, Yu Kefu, Chen Tianran, et al. Preliminary study of coral bleaching at cellular level under thermal stress[J]. Journal of Tropical Oceanography, 2011, 30(2): 33−38.
|
[24] |
俞小鹏. 南海北部造礁珊瑚对高温胁迫的响应及适应性研究[D]. 南宁: 广西大学, 2022.
Yu Xiaopeng. Response and adaptation of scleractinian coral to high temperature stress in the Northern South China Sea[D]. Nanning: Guangxi University, 2022.
|
[25] |
E Johannes R, L Coles S, L Kuenzel N T J, et al. The role of coolants in the nutrition of some scarlatina corals[J]. Limnology and Oceanography, 1970, 15(4): 5799−5586. (查阅网上资料, 未找到本条文献信息, 请确认)
E Johannes R, L Coles S, L Kuenzel N T J, et al. The role of coolants in the nutrition of some scarlatina corals[J]. Limnology and Oceanography, 1970, 15(4): 5799−5586. ( 查阅网上资料, 未找到本条文献信息, 请确认)
|
[26] |
Jeffrey Dr S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochemie Und Physiologie Der Pflanzen, 1975, 167(2): 191−194. doi: 10.1016/S0015-3796(17)30778-3
|
[27] |
Zhou Zhi, Ni Xingzhen, Wu Zhongjie, et al. Physiological and transcriptomic analyses reveal the threat of herbicides glufosinate and glyphosate to the scleractinian coral Pocillopora damicornis[J]. Ecotoxicology and Environmental Safety, 2022, 229: 113074. doi: 10.1016/j.ecoenv.2021.113074
|
[28] |
Tang Xiaoyu, Yang Qingsong, Zhang Ying, et al. Validating the use of ROS-scavenging bacteria as probiotics to increase coral resilience to thermal stress[J]. Journal of Oceanology and Limnology, 2024, 42(4): 1242−1260. doi: 10.1007/s00343-024-3159-0
|
[29] |
Ighodaro O M, Akinloye O A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid[J]. Alexandria Journal of Medicine, 2018, 54(4): 287−293. doi: 10.1016/j.ajme.2017.09.001
|
[30] |
Nimse S B, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms[J]. RSC Advances, 2015, 5(35): 27986−28006. doi: 10.1039/C4RA13315C
|
[31] |
Dias M, Ferreira A, Gouveia R, et al. Long-term exposure to increasing temperatures on scleractinian coral fragments reveals oxidative stress[J]. Marine Environmental Research, 2019, 150: 104758. doi: 10.1016/j.marenvres.2019.104758
|
[32] |
Lesser M P. Oxidative stress in marine environments: biochemistry and physiological ecology[J]. Annual Review of Physiology, 2006, 68: 253−278. doi: 10.1146/annurev.physiol.68.040104.110001
|
[33] |
Tang Jia, Ni Xingzhen, Wen Jianqing, et al. Increased ammonium assimilation activity in the scleractinian coral Pocillopora damicornis but not its symbiont after acute heat stress[J]. Frontiers in Marine Science, 2020, 7: 565068. doi: 10.3389/fmars.2020.565068
|
[34] |
Su Yilu, Zhou Zhi, Yu Xiaopeng. Possible roles of glutamine synthetase in responding to environmental changes in a scleractinian coral[J]. Molecular Biology Reports, 2018, 45(6): 2115−2124. doi: 10.1007/s11033-018-4369-3
|
[35] |
刘旭, 黄雯, 俞小鹏, 等. 适度热胁迫对造礁石珊瑚热耐受性影响的研究[J]. 海洋湖沼通报, 2022, 44(1): 99−105.
Liu Xu, Huang Wen, Yu Xiaopeng, et al. Studies on the effect of moderate heat stress on the heat tolerance of scleractinian coral[J]. Transactions of Oceanology and Limnology, 2022, 44(1): 99−105.
|
[36] |
Yu Xiaopeng, Huang Bo, Zhou Zhi, et al. Involvement of caspase3 in the acute stress response to high temperature and elevated ammonium in stony coral Pocillopora damicornis[J]. Gene, 2017, 637: 108−114. doi: 10.1016/j.gene.2017.09.040
|
[37] |
李淑, 余克服, 施祺, 等. 海南岛鹿回头石珊瑚对高温响应行为的实验研究[J]. 热带地理, 2008, 28(6): 534−539.
Li Shu, Yu Kefu, Shi Qi, et al. Experimental study of stony coral response to the high temperature in Luhuitou of Hainan Island[J]. Tropical Geography, 2008, 28(6): 534−539.
|
[38] |
Huang Wen, Meng Linqing, Xiao Zunyong, et al. Heat‐tolerant intertidal rock pool coral Porites lutea can potentially adapt to future warming[J]. Molecular Ecology, 2024, 33(5): e17273. doi: 10.1111/mec.17273
|
[39] |
Hinrichs S, Patten N L, Waite A M. Temporal variations in metabolic and autotrophic indices for acropora digitifera and acropora spicifera - implications for monitoring projects[J]. PLoS One, 2013, 8(5): e63693. doi: 10.1371/journal.pone.0063693
|
[40] |
张海洋, 赵美霞, 钟瑜, 等. 南海北部造礁石珊瑚共生体光合作用特征季节性监测[J]. 海洋地质前沿, 2021, 37(6): 84−91.
Zhang Haiyang, Zhao Meixia, Zhong Yu, et al. Seasonal monitoring of photosynthesis characteristics of scleractinian corals in the Northern South China Sea[J]. Marine Geology Frontiers, 2021, 37(6): 84−91.
|
[41] |
Stimson J. The annual cycle of density of zooxanthellae in the tissues of field and laboratory-held Pocillopora damicornis (Linnaeus)[J]. Journal of Experimental Marine Biology and Ecology, 1997, 214(1-2): 35−48. doi: 10.1016/S0022-0981(96)02753-0
|
[42] |
Brown B E, Dunne R P, Ambarsari I, et al. Seasonal fluctuations in environmental factors and variations in symbiotic algae and chlorophyll pigments in four Indo-Pacific coral species[J]. Marine Ecology Progress Series, 1999, 191: 53−69. doi: 10.3354/meps191053
|
[43] |
Bhagooli R, Hidaka M. Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2004, 137(3): 547−555.
|
[44] |
Cziesielski M J, Schmidt-Roach S, Aranda M. The past, present, and future of coral heat stress studies[J]. Ecology and Evolution, 2019, 9(17): 10055−10066. doi: 10.1002/ece3.5576
|
[45] |
Weis V M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis[J]. Journal of Experimental Biology, 2008, 211(19): 3059−3066. doi: 10.1242/jeb.009597
|
[46] |
邓传奇. 南海环境敏感型造礁珊瑚共生微生物应对温度改变的生态过程[D]. 南宁: 广西大学, 2021.
Deng Chuanqi. Ecological process of symbiotic microorganisms in environmentally sensitive reef-building corals in the South China Sea in response to temperature changes[J]. Nanning: Guangxi University, 2021.
|
[47] |
许勇前, 陈飚, 覃良云, 等. 涠洲岛霜鹿角珊瑚共生虫黄藻群落的季节变化特征[J]. 广东农业科学, 2023, 50(7): 164−172.
Xu Yongqian, Chen Biao, Qin Liangyun, et al. Seasonal variation characteristics of the symbiodiniaceae community associated with Acropora pruinosa from Weizhou Island[J]. Guangdong Agricultural Sciences, 2023, 50(7): 164−172.
|
[48] |
韦雪露. 涠洲岛珊瑚共生功能体对季节性温度波动及极端温度胁迫的响应[D]. 南宁: 广西大学, 2024.
Wei Xuelu. The response of coral holobionts to seasonal temperature fluctuations and extreme temperature stress in Weizhou Island[D]. Nanning: Guangxi University, 2024.
|
[49] |
骆雯雯. 涠洲岛造礁石珊瑚共生体系对异常温度胁迫响应的实验研究[D]. 南宁: 广西大学, 2019.
Luo Wenwen. Experimental response of reef-building coral symbiotic system in Weizhou Island to abnormalous temperature stress[D]. Nanning: Guangxi University, 2019.
|
[50] |
Rowan R. Coral bleaching: thermal adaptation in reef coral symbionts[J]. Nature, 2004, 430(7001): 742. doi: 10.1038/430742a
|
[51] |
Al-Hammady M A M M, Silva T F, Hussein H N M, et al. How do algae endosymbionts mediate for their coral host fitness under heat stress? A comprehensive mechanistic overview[J]. Algal Research, 2022, 67: 102850. doi: 10.1016/j.algal.2022.102850
|