Citation: | XIANG Zhiyuan,ZHANG Fenfen,WEI Jine, et al. The preservation of organic carbon by active iron oxides in surface sediments from Guangxi mangroves.[J]. Haiyang Xuebao,2024, 46(x):1–21 |
[1] |
Phang V X H, Chou L M, Friess D A. Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar[J]. Earth Surface Processes and Landforms, 2015, 40(10): 1387−1400. doi: 10.1002/esp.3745
|
[2] |
Donato D C, Kauffman J B, Murdiyarso D, et al. Mangroves among the most carbon-rich forests in the tropics[J]. Nature Geoscience, 2011, 4(5): 293−297. doi: 10.1038/ngeo1123
|
[3] |
Sandilyan S, Kathiresan K. Mangrove conservation: a global perspective[J]. Biodiversity and Conservation, 2012, 21(14): 3523−3542. doi: 10.1007/s10531-012-0388-x
|
[4] |
Dicen G P, Navarrete I A, Rallos R V, et al. The role of reactive iron in long-term carbon sequestration in mangrove sediments[J]. Journal of Soils and Sediments, 2019, 19(1): 501−510. doi: 10.1007/s11368-018-2051-y
|
[5] |
Alongi D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science, 2014, 6(1): 195−219. doi: 10.1146/annurev-marine-010213-135020
|
[6] |
McLeod E, Chmura G L, Bouillon S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552−560. doi: 10.1890/110004
|
[7] |
Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388): 198−200. doi: 10.1038/nature10855
|
[8] |
Chen ChunmeiC, Hall S J, Coward E, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 2020, 11(1): 2255. doi: 10.1038/s41467-020-16071-5
|
[9] |
Kida M, Fujitake N. Organic carbon stabilization mechanisms in mangrove soils: a review[J]. Forests, 2020, 11(9): 981. doi: 10.3390/f11090981
|
[10] |
Zhao B, Yao P, Bianchi T S, et al. The role of reactive iron in the preservation of terrestrial organic carbon in estuarine sediments[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(12): 3556−3569. doi: 10.1029/2018JG004649
|
[11] |
Shields M R, Bianchi T S, Gélinas Y, et al. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments[J]. Geophysical Research Letters, 2016, 43(3): 1149−1157. doi: 10.1002/2015GL067388
|
[12] |
Zhao BinB, Yao PengP, Bianchi T S, et al. Preferential preservation of pre-aged terrestrial organic carbon by reactive iron in estuarine particles and coastal sediments of a large river-dominated estuary[J]. Geochimica et Cosmochimica Acta, 2023, 345: 34−49. doi: 10.1016/j.gca.2023.01.023
|
[13] |
Zhao QianQ, Poulson S R, Obrist D, et al. Iron-bound organic carbon in forest soils: quantification and characterization[J]. Biogeosciences, 2016, 13(16): 4777−4788. doi: 10.5194/bg-13-4777-2016
|
[14] |
但新球 , 廖宝文 , 吴照柏 , 等 . 中国红树林湿地资源、保护现状和主要威胁 [J]. 生态环境学报 , 2016, 25(7): 1237−1243.
Dan Xinqiu, Liao Baowen, Wu Zhaobai, et al. Resources, conservation status and main threats of mangrove wetlands in China[J]. Ecology and Environment Sciences, 2016, 25(7): 1237−1243.
|
[15] |
Zhao Bo, Jia YunlongY, Wu ShengjieS, et al. Preservation of soil organic carbon in coastal wetlands promoted by glomalin–iron–organic carbon ternary system[J]. Limnology and Oceanography, 2022, 67(S2): S180−S192.
|
[16] |
Salvadó J A, Tesi T, Andersson A, et al. Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf[J]. Geophysical Research Letters, 2015, 42(19): 8122−8130. doi: 10.1002/2015GL066058
|
[17] |
Jing XiaX, Zhang FenfenF, Wu YingY. Iron speciation in sediment cores near the Jiulong Methane Reef and its implication[J]. Estuarine, Coastal and Shelf Science, 2019, 224: 253−259. doi: 10.1016/j.ecss.2019.04.015
|
[18] |
Hu YuY, Feng DongD, Chen LinyingL, et al. Using iron speciation in authigenic carbonates from hydrocarbon seeps to trace variable redox conditions[J]. Marine and Petroleum Geology, 2015, 67: 111−119. doi: 10.1016/j.marpetgeo.2015.05.001
|
[19] |
Wei JineJ, Zhang FenfenF, He TangrongT, et al. Selective associations of organic matter components with ferrihydrite: implications for Fe-organic matter preservation in tidal flat wetlands[J]. Geoderma, 2023, 437: 116574. doi: 10.1016/j.geoderma.2023.116574
|
[20] |
De Junet A, Basile-Doelsch I, Borschneck D, et al. Characterisation of organic matter from organo-mineral complexes in an Andosol from Reunion Island[J]. Journal of Analytical and Applied Pyrolysis, 2013, 99: 92−100. doi: 10.1016/j.jaap.2012.10.020
|
[21] |
Singh S, D’Sa E J, Swenson E M. Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin using excitation–emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC)[J]. Science of the Total Environment, 2010, 408(16): 3211−3222. doi: 10.1016/j.scitotenv.2010.03.044
|
[22] |
McKnight D M, Boyer E W, Westerhoff P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38−48. doi: 10.4319/lo.2001.46.1.0038
|
[23] |
Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706−719. doi: 10.1016/j.orggeochem.2009.03.002
|
[24] |
Stedmon C A, Bro R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial: fluorescence-PARAFAC analysis of DOM[J]. Limnology and Oceanography: Methods, 2008, 6(11): 572−579. doi: 10.4319/lom.2008.6.572
|
[25] |
Murphy K R, Stedmon C A, Wenig P, et al. OpenFluor– an online spectral library of auto-fluorescence by organic compounds in the environment[J]. AnalyticalAnal. Methods, 2014, 6(3): 658−661. doi: 10.1039/C3AY41935E
|
[26] |
Zheng GuodongG, Fu BihongB, Takahashi Y, et al. Chemical speciation of redox sensitive elements during hydrocarbon leaching in the Junggar Basin, Northwest China[J]. Journal of Asian Earth Sciences, 2010, 39(6): 713−723. doi: 10.1016/j.jseaes.2010.05.006
|
[27] |
Dyar M D, Agresti D G, Schaefer M W, et al. Mössbauer spectroscopy of earth and planetary materials[J]. Annual Review of Earth and Planetary Sciences, 2006, 34(1): 83−125. doi: 10.1146/annurev.earth.34.031405.125049
|
[28] |
Reeves J B. Mid-infrared spectral interpretation of soils: is it practical or accurate?[J]. Geoderma, 2012, 189-190: 508−513. doi: 10.1016/j.geoderma.2012.06.008
|
[29] |
Parikh S J, Goyne K W, Margenot A J, et al. Soil chemical insights provided through vibrational spectroscopy[GJ]//. Advances in Agronomy. Elsevier, 2014, 126: 1−148.
|
[30] |
Zhuang Wan-e, Chen Wei, Yang Liyang. Effects of photodegradation on the optical indices of chromophoric dissolved organic matter from typical sources[J]. International Journal of Environmental Research and Public Health, 2022, 19(21): 14268. doi: 10.3390/ijerph192114268
|
[31] |
Søndergaard M, Stedmon C A, Borch N H. Fate of terrigenous dissolved organic matter (DOM) in estuaries: aggregation and bioavailability[J]. Ophelia, 2003, 57(3): 161−176. doi: 10.1080/00785236.2003.10409512
|
[32] |
Yao YuanY, Li YunzhenY, Guo XujingX, et al. Changes and characteristics of dissolved organic matter in a constructed wetland system using fluorescence spectroscopy[J]. Environmental Science and Pollution Research, 2016, 23(12): 12237−12245. doi: 10.1007/s11356-016-6435-5
|
[33] |
Catalá T S, Reche I, Fuentes-Lema A, et al. Turnover time of fluorescent dissolved organic matter in the dark global ocean[J]. Nature Communications, 2015, 6(1): 5986. doi: 10.1038/ncomms6986
|
[34] |
Yamashita Y, Scinto L J, Maie N, et al. Dissolved organic matter characteristics across a subtropical wetland’s landscape: application of optical properties in the assessment of environmental dynamics[J]. Ecosystems, 2010, 13(7): 1006−1019. doi: 10.1007/s10021-010-9370-1
|
[35] |
Wang Di, Zhu Maoxum, Yang Guipengg, et al. Reactive iron and iron‐bound organic carbon in surface sediments of the river-dominated Bohai Sea (China) versus the Southern Yellow Sea[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(1): 79−98. doi: 10.1029/2018JG004722
|
[36] |
Ma Weiweiw-W, Zhu Maoxum-X, Yang Guipengg-P, et al. Iron geochemistry and organic carbon preservation by iron (oxyhydr)oxides in surface sediments of the East China Sea and the South Yellow Sea[J]. Journal of Marine Systems, 2018, 178: 62−74. doi: 10.1016/j.jmarsys.2017.10.009
|
[37] |
Kaiser K, Guggenberger G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils[J]. Organic Geochemistry, 2000, 31(7-/8): 711−725.
|
[38] |
Chen ChunmeiC, Kukkadapu R, Sparks D L. Influence of coprecipitated organic matter on Fe 2+ (aq) -catalyzed transformation of ferrihydrite: implications for carbon dynamics[J]. Environmental Science & Technology, 2015, 49(18): 10927−10936.
|
[39] |
Sodano M, Lerda C, Nisticò R, et al. Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron[J]. Geoderma, 2017, 307: 19−29. doi: 10.1016/j.geoderma.2017.07.022
|
[40] |
Li ChaoC, Yang ShouyeS, Lian ErgangE, et al. Chemical speciation of iron in sediments from the Changjiang Estuary and East China Sea: iron cycle and paleoenvironmental implications[J]. Quaternary International, 2017, 452: 116−128. doi: 10.1016/j.quaint.2016.07.014
|
[41] |
Poulton S W, Raiswell R. Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments[J]. Chemical Geology, 2005, 218(3/−4): 203−221.
|
[42] |
Faust J C, Tessin A, Fisher B J, et al. Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments[J]. Nature Communications, 2021, 12(1): 275. doi: 10.1038/s41467-020-20550-0
|
[43] |
Longman J, Gernon T M, Palmer M R, et al. Tephra deposition and bonding with reactive oxides enhances burial of organic carbon in the Bering Sea[J]. Global Biogeochemical Cycles, 2021, 35(11): e2021GB007140. doi: 10.1029/2021GB007140
|
[44] |
Bai JingJ, Luo MinM, Yang Yang, et al. Iron-bound carbon increases along a freshwater−oligohaline gradient in a subtropical tidal wetland[J]. Soil Biology and Biochemistry, 2021, 154: 108128. doi: 10.1016/j.soilbio.2020.108128
|
[45] |
Wen YuanY, Zang HuadongH, Ma QingxuQ, et al. Is the ‘enzyme latch’ or ‘iron gate’ the key to protecting soil organic carbon in peatlands?[J]. Geoderma, 2019, 349: 107−113. doi: 10.1016/j.geoderma.2019.04.023
|
[46] |
Zhao YunpengY, Xiang Wu, Ma Ming, et al. The role of laccase in stabilization of soil organic matter by iron in various plant-dominated peatlands: degradation or sequestration?[J]. Plant and Soil, 2019, 443(1/−2): 575−590.
|
[47] |
Duan XunX, Yu XiaofeiX, Li ZheZ, et al. Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands[J]. Soil Biology and Biochemistry, 2020, 149: 107949. doi: 10.1016/j.soilbio.2020.107949
|
[48] |
Schwestermann T, Eglinton T I, Haghipour N, et al. Event-dominated transport, provenance, and burial of organic carbon in the Japan Trench[J]. Earth and Planetary Science Letters, 2021, 563: 116870. doi: 10.1016/j.jpgl.2021.116870
|
[49] |
Kristensen E, Bouillon S, Dittmar T, et al. Organic carbon dynamics in mangrove ecosystems: a review[J]. Aquatic Botany, 2008, 89(2): 201−219. doi: 10.1016/j.aquabot.2007.12.005
|
[50] |
查阅网上资料, 本条文献与第 11 条文献重复, 请确认
Shields M R, Bianchi T S, Gélinas Y, et al. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments[J]. Geophysical Research Letters, 2016, 43(3): 1149−1157
|
[51] |
Zhao BinB, Yao PengP, Bianchi T S, et al. The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas[J]. Chemical Geology, 2018, 495: 104−117. doi: 10.1016/j.chemgeo.2018.08.012
|
[52] |
Sun Changhongc-H, Zhu Maoxum-X, Ma Weiweiw-W, et al. Examining bulk and iron-associated organic carbon through depth in margin sea sediments (China) under contrasting depositional settings: Chemical and NEXAFS spectral characterization[J]. Journal of Marine Systems, 2020, 207: 103344. doi: 10.1016/j.jmarsys.2020.103344
|
[53] |
刘良叙 , 李朝风 , 王嘉伟 , 等 . 芳香类天然产物的合成生物学研究进展 [J]. 生物工程学报 , 2021, 37(6): 2010−2025.
Liu Liangxu, Li Chaofeng, Wang Jiawei, et al. Synthetic biology for the synthesis of aromatic natural products: a review[J]. Chinese Journal of Biotechnology, 2021, 37(6): 2010−2025.
|
[54] |
Adhikari D, Yang Yu. Selective stabilization of aliphatic organic carbon by iron oxide[J]. Scientific Reports, 2015, 5(1): 11214. doi: 10.1038/srep11214
|
[55] |
Chen ChunmeiC, Dynes J J, Wang Jian, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption[J]. Environmental Science & Technology, 2014, 48(23): 13751−13759.
|
[56] |
Riedel T, Zak D, Biester H, et al. Iron traps terrestrially derived dissolved organic matter at redox interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25): 10101−10105.
|
[57] |
Riedel T, Biester H, Dittmar T. Molecular fractionation of dissolved organic matter with metal salts[J]. Environmental Science & Technology, 2012, 46(8): 4419−4426.
|
[58] |
Yamashita Y, Tanoue E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Marine Chemistry, 2003, 82(3/−4): 255−271.
|