Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
HUANG Yanan,LIU Zhiyong,GUAN Yongjing. Research on the sources and trends of 239+240Pu in the Northern South China Sea[J]. Haiyang Xuebao,2024, 47(x):1–13
Citation: HUANG Yanan,LIU Zhiyong,GUAN Yongjing. Research on the sources and trends of 239+240Pu in the Northern South China Sea[J]. Haiyang Xuebao,2024, 47(x):1–13

Research on the sources and trends of 239+240Pu in the Northern South China Sea

  • Received Date: 2024-07-08
  • Rev Recd Date: 2024-11-01
  • Available Online: 2024-12-02
  • This study compiled data on the 239+240Pu concentration or specific ratio-activity, 240Pu/239Pu atom ratio, and 239+240Pu flux or inventory in seawater, corals, shells and sediment samples in the Northern South China Sea. The 239+240Pu sources and trends in surface seawater, water columns, surface sediments, and sediment cores in this area were presented. According to the two end member model, global fallout (GF) and the Pacific Proving Grounds (PPG) were currently the sources of 239+240Pu in environmental samples investigated from the northern South China Sea. Meanwhile, according to the migration model, it was found for the first time that a positive linear relationship between the water depth corresponding to the 239+240Pu peak concentration in the water column and its migration rate. The correlation between the organic matter content or particle size of surface sediments and the 239+240Pu specific ratio-activity had a segmented nature, showing positive and negative correlations, respectively. The numerical result of the 239+240Pu chrono-marker sedimentation rate in sediment core samples was usually greater than or equal to the maximum apparent diffusion rate of relatively exchangeable 239+240Pu in the same core sample, and there was a significant positive linear relationship between the sedimentation rate and the maximum apparent diffusion rate, the maximum apparent diffusion rate of relatively exchangeable 239+240Pu does not affect the sedimentation rate.
  • loading
  • [1]
    Zheng Jian, Tagami K, Watanabe Y, et al. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident[J]. Scientific Reports, 2012, 2(1): 304. doi: 10.1038/srep00304
    [2]
    杨国胜, 胡珺, 郑建. 福岛核事故对日本环境和食品安全的影响[J]. 国际放射医学核医学杂志, 2019, 43(2): 99−105. doi: 10.3760/cma.j.issn.1673-4114.2019.02.001

    Yang Guosheng, Hu Jun, Zheng Jian. Environmental impact and food safety in Japan after the Fukushima Daiichi Nuclear Power Plant accident[J]. International Journal of Radiation Medicine and Nuclear Medicine, 2019, 43(2): 99−105. doi: 10.3760/cma.j.issn.1673-4114.2019.02.001
    [3]
    Zheng Jian, Tagami K, Uchida S. Release of plutonium isotopes into the environment from the Fukushima Daiichi nuclear power plant accident: what is known and what needs to be known[J]. Environmental Science & Technology, 2013, 47(17): 9584−9595.
    [4]
    Steinhauser G, Brandl A, Johnson T E. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts[J]. Science of the Total Environment, 2014, 470−471: 800−817. doi: 10.1016/j.scitotenv.2013.10.029
    [5]
    Nan Feng, Xue Huijie, Yu Fei. Kuroshio intrusion into the South China Sea: a review[J]. Progress in Oceanography, 2015, 137: 314−333. doi: 10.1016/j.pocean.2014.05.012
    [6]
    UNSCEAR. Sources and effects of ionizing radiation[R]. New York: United Nations, 2000.
    [7]
    Aarkrog A. Input of anthropogenic radionuclides into the world ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(17/21): 2597−2606.
    [8]
    Hamilton T F. Linking legacies of the cold war to arrival of anthropogenic radionuclides in the oceans through the 20th century[R]. Livermore: Lawrence Livermore National Laboratory, 2005: 23−78.
    [9]
    李思璇, 黄雯娜, 许宏, 等. 西北太平洋表层海水中239+240Pu浓度及240Pu/239Pu同位素比[J]. 原子能科学技术, 2021, 55(4): 751−760. doi: 10.7538/yzk.2020.youxian.0082

    Li Sixuan, Huang Wenna, Xu Hong, et al. 239+240Pu concentration and 240Pu/239Pu isotopic ratio in surface seawater of Northwest Pacific[J]. Atomic Energy Science and Technology, 2021, 55(4): 751−760. doi: 10.7538/yzk.2020.youxian.0082
    [10]
    Guan Yongjing, Sun Shuyue, Sun Shaohan, et al. Distribution and sources of plutonium along the coast of Guangxi, China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2018, 437: 61−65.
    [11]
    Chen Jisheng, Wang Cui, Wu Junwen, et al. Plutonium in sediments of the Eastern Guangdong coast-its sources and their contribution[J]. Marine Pollution Bulletin, 2023, 193: 115222. doi: 10.1016/j.marpolbul.2023.115222
    [12]
    黄亚楠. 中国沿海省份环境中239+240Pu的来源与含量水平[J]. 中山大学学报(自然科学版)(中英文), 2023, 62(2): 113−122.

    Huang Yanan. The source and level of 239+240Pu in the environment of coastal provinces in China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2023, 62(2): 113−122.
    [13]
    Tighe C, Castrillejo M, Christl M, et al. Local and global trace plutonium contributions in fast breeder legacy soils[J]. Nature Communications, 2021, 12(1): 1381. doi: 10.1038/s41467-021-21575-9
    [14]
    王中良, 山田正俊, 郑建. 钚同位素法示踪中国领海核爆散落物钚的主要来源与迁移途径[J]. 地球与环境, 2007, 35(4): 289−296. doi: 10.3969/j.issn.1672-9250.2007.04.001

    Wang Zhongliang, Yamada M, Zheng Jian. Sources and transport route of plutonium in the China’s Seas[J]. Earth and Environment, 2007, 35(4): 289−296. doi: 10.3969/j.issn.1672-9250.2007.04.001
    [15]
    谢骏箭. 我国南海近岸核电站附近海域环境中Pu的测定及含量水平研究[D]. 衡阳: 南华大学, 2016.

    Xie Junjian. The study of measurement and concentration of the Pu in the marine environment near the nuclear power plant of south China Sea[D]. Hengyang: University of South China, 2016.
    [16]
    Wu Junwen. Sources and scavenging of plutonium in the East China Sea[J]. Marine Pollution Bulletin, 2018, 135: 808−818. doi: 10.1016/j.marpolbul.2018.08.014
    [17]
    Wu Junwen, Dai Minhan, Xu Yi, et al. Sources and accumulation of plutonium in a large Western Pacific marginal sea: the South China Sea[J]. Science of the Total Environment, 2018, 610−611: 200−211. doi: 10.1016/j.scitotenv.2017.07.226
    [18]
    詹宪钰. 涠洲岛珊瑚骨骼中钚含量测定[D]. 南宁: 广西大学, 2019.

    Zhan Xianyu. Determination of Plutonium in coral skeleton near Weizhou island[D]. Nanning: Guangxi University, 2019.
    [19]
    Guan Yongjing, Mai Jingyu, Wang Huijuan, et al. Plutonium isotopes and radionuclides in corals around Weizhou land in Beibu Gulf, China[J]. Applied Radiation and Isotopes, 2021, 176: 109873. doi: 10.1016/j.apradiso.2021.109873
    [20]
    Dong Wei, Zheng Jian, Guo Qiuju, et al. Characterization of plutonium in deep-sea sediments of the Sulu and south China seas[J]. Journal of Environmental Radioactivity, 2010, 101(8): 622−629. doi: 10.1016/j.jenvrad.2010.03.011
    [21]
    Wu Junwen, Zheng Jian, Dai Minhan, et al. Isotopic composition and distribution of Plutonium in northern south China sea sediments revealed continuous release and transport of Pu from the Marshall islands[J]. Environmental Science & Technology, 2014, 48(6): 3136−3144.
    [22]
    Wang Ruirui, Fu Yao, Lei Ling, et al. Distribution and source identification of Pu in river basins in southern China[J]. ACS Omega, 2019, 4(27): 22646−22654. doi: 10.1021/acsomega.9b03650
    [23]
    Wang Ruirui, Lei Ling, Li Gang, et al. Identification of the distribution and sources of Pu in the northern south China sea: influences of provenance and scavenging[J]. ACS Earth and Space Chemistry, 2019, 3(12): 2684−2694. doi: 10.1021/acsearthspacechem.9b00245
    [24]
    Zhang Mengting, Qiao Jixin, Zhang Weichao, et al. Plutonium isotopes in the northwestern South China Sea: level, distribution, source and deposition[J]. Environmental Pollution, 2022, 298: 118846. doi: 10.1016/j.envpol.2022.118846
    [25]
    Guan Yongjing, He Hua, Fan Kaidi, et al. Spatial distribution, source identification, and transportation paths of plutonium in the Beibu Gulf, South China Sea[J]. Marine Pollution Bulletin, 2024, 199: 115972. doi: 10.1016/j.marpolbul.2023.115972
    [26]
    Wei Xiaomin, Zhang Ruihan, Zhu Jianjun, et al. Spatial distribution and modelling of 239+240Pu in the sediments and seawater columns of the South China Sea and Indian Ocean[J]. Environmental Pollution, 2024, 343: 123244. doi: 10.1016/j.envpol.2023.123244
    [27]
    王深圳. 中国南海钚的分布及环境意义[D]. 南宁: 广西大学, 2023: 1−99.

    Wang Shenzhen. Plutonium distribution and environmental significance in the south China sea[D]. Nanjing: Guangxi University, 2023: 1−99.
    [28]
    Huang Yanan, Chamizo E, Tenorio R G, et al. Presence of 236U, 237Np and 239, 240Pu in shells from the coast of the south of China[J]. Journal of Environmental Radioactivity, 2024, 278: 107490. doi: 10.1016/j.jenvrad.2024.107490
    [29]
    Li Sixuan, Ni Youyi, Guo Qiuju. Plutonium in the coastal seawater around Chinese nuclear power plants: sources, distribution, and environmental implications[J]. Marine Pollution Bulletin, 2024, 207: 116882. doi: 10.1016/j.marpolbul.2024.116882
    [30]
    Buesseler K O. The isotopic signature of fallout plutonium in the North Pacific[J]. Journal of Environmental Radioactivity, 1997, 36(1): 69−83. doi: 10.1016/S0265-931X(96)00071-9
    [31]
    Kelley J M, Bond L A, Beasley T M. Global distribution of Pu isotopes and 237Np[J]. Science of the Total Environment, 1999, 237-238: 483−500. doi: 10.1016/S0048-9697(99)00160-6
    [32]
    Lindahl P, Lee S H, Worsfold P, et al. Plutonium isotopes as tracers for ocean processes: a review[J]. Marine Environmental Research, 2010, 69(2): 73−84. doi: 10.1016/j.marenvres.2009.08.002
    [33]
    Lee S H, Gastaud J, Povinec P P, et al. Distribution of plutonium and americium in the marginal seas of the northwest Pacific Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(17-21): 2727−2750. doi: 10.1016/S0967-0645(03)00150-4
    [34]
    Xie Tengxiang, Dai Minhan, Hamzah F, et al. Sources and transport of plutonium in the Indo-Pacific Intersection: implications for South China Sea freshwater transport into Indonesian Seas[J]. Chemical Geology, 2021, 580: 120367. doi: 10.1016/j.chemgeo.2021.120367
    [35]
    林武辉, 张帆, 余克服, 等. 人工放射性核素在珊瑚岛礁系统中的富集与评估[J]. 地球科学进展, 2023, 38(3): 286−295. doi: 10.11867/j.issn.1001-8166.2022.082

    Lin Wuhui, Zhang Fan, Yu Kefu, et al. Assessment and enrichment of artificial radionuclides in coral reef ecosystems[J]. Advances in Earth Science, 2023, 38(3): 286−295. doi: 10.11867/j.issn.1001-8166.2022.082
    [36]
    Wong G T F, Ku T L, Mulholland M, et al. The South East Asian Time-series Study (SEATS) and the biogeochemistry of the South China Sea-an overview[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(14/15): 1434−1447.
    [37]
    Yamada M, Zheng Jian. 239Pu and 240Pu inventories and 240Pu/239Pu atom ratios in the equatorial Pacific Ocean water column[J]. Science of the Total Environment, 2012, 430: 20−27. doi: 10.1016/j.scitotenv.2012.04.065
    [38]
    Yamada M, Zheng Jian. 240Pu/239Pu atom ratios in water columns from the North Pacific Ocean and Bering Sea: transport of Pacific Proving Grounds-derived Pu by ocean currents[J]. Science of the Total Environment, 2020, 718: 137362. doi: 10.1016/j.scitotenv.2020.137362
    [39]
    Yamada M, Zheng Jian. Distributions of 239Pu and 240Pu concentrations and 240Pu/239Pu atom ratios and 239+240Pu inventories in a water column in the eastern Indian Ocean: transport of Pacific proving grounds-derived Pu via the Indonesian throughflow[J]. Environmental Science & Technology, 2021, 55(20): 13849−13859.
    [40]
    李学斌, 何胡晟, 彭安国, 等. 南沙海域沉积物239+240Pu和137Cs的分布特征及环境意义[J]. 环境化学, 2023, 42(12): 4229−4237. doi: 10.7524/j.issn.0254-6108.2022060202

    Li Xuebin, He Husheng, Peng Anguo, et al. Distribution characteristics and environmental significance of 239+240Pu and 137Cs in sediments in Nansha Sea area[J]. Environmental Chemistry, 2023, 42(12): 4229−4237. doi: 10.7524/j.issn.0254-6108.2022060202
    [41]
    Huang Yanan, Sun Xiaoming, Zhang Wei. Spatio-temporal distribution of 239+240Pu in sediments of the China sea and adjacent waters[J]. Journal of Environmental Radioactivity, 2022, 253−254: 107010. doi: 10.1016/j.jenvrad.2022.107010
    [42]
    Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Research, 1954, 24(3): 151−158.
    [43]
    倪玉根, 李建国, 习龙. 海砂粒级划分标准和沉积物命名方法探讨[J]. 热带海洋学报, 2021, 40(3): 143−151. doi: 10.11978/2020062

    Ni Yugen, Li Jianguo, Xi Long. Discussion on grain-size grading scale and sediment classification for marine sand and gravel[J]. Journal of Tropical Oceanography, 2021, 40(3): 143−151. doi: 10.11978/2020062
    [44]
    黄亚楠. 中国渤、黄海柱样中239+240Pu的分布与沉积通量[J]. 海洋环境科学, 2022, 41(5): 723−730.

    Huang Yanan. Vertical distributions and inventories of 239+240Pu in sediment cores of Bohai and Yellow Seas of China[J]. Marine Environmental Science, 2022, 41(5): 723−730.
    [45]
    黄亚楠. 中国东部海域中239+240Pu的来源与沉积过程研究[J]. 海洋学报, 2022, 44(11): 77−87.

    Huang Yanan. Source and sedimentary process of 239+240Pu in the eastern China seas[J]. Haiyang Xuebao, 2022, 44(11): 77−87.
    [46]
    Liu Zhiyong, Zheng Jian, Pan Shaoming, et al. Pu and 137Cs in the Yangtze River Estuary sediments: distribution and source identification[J]. Environmental Science & Technology, 2011, 45(5): 1805−1811.
    [47]
    Zhang Rui, Wang Ruirui, Liu Zhiyong, et al. Distribution and transport of plutonium in the sediments of the Yangtze River estuary and the adjacent East China Sea[J]. Applied Geochemistry, 2020, 115: 104532. doi: 10.1016/j.apgeochem.2020.104532
    [48]
    Pan Shaoming, Tims S G, Liu X Y, et al. 137Cs, 239+240Pu concentrations and the 240Pu/239Pu atom ratio in a sediment core from the sub-aqueous delta of Yangtze River estuary[J]. Journal of Environmental Radioactivity, 2011, 102(10): 930−936.
    [49]
    Wang Jinlong, Baskaran M, Hou Xiaolin, et al. Historical changes in 239Pu and 240Pu sources in sedimentary records in the East China Sea: implications for provenance and transportation[J]. Earth and Planetary Science Letters, 2017, 466: 32−42. doi: 10.1016/j.jpgl.2017.03.005
    [50]
    Wang Zhongliang, Yamada M. Plutonium activities and 240Pu/239Pu atom ratios in sediment cores from the East China Sea and Okinawa Trough: sources and inventories[J]. Earth and Planetary Science Letters, 2005, 233(3/4): 441−453.
    [51]
    Wang Jinlong, Du Jinzhou, Zheng Jian, et al. Plutonium in Southern Yellow Sea sediments and its implications for the quantification of oceanic-derived mercury and zinc[J]. Environmental Pollution, 2020, 266: 115262. doi: 10.1016/j.envpol.2020.115262
    [52]
    Sun Jiang, Zhu Shaodong, Xing Shan, et al. Level, distribution and sources of Np, Pu and Am isotopes in Peter the Great Bay of Japan sea[J]. Journal of Environmental Radioactivity, 2024, 274: 107400. doi: 10.1016/j.jenvrad.2024.107400
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article views (91) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return