| Citation: | Liu Xuan,Luo Zhaohe,Jin Rui, et al. Projected Changes of the Potential Distribution of Azadinium dexteroporum in Chinese Coastal Waters under Climate Change[J]. Haiyang Xuebao,2025, 48(x):1–13 |
| [1] |
Bindoff N L, Cheung W W L, Kairo J G, et al. Changing ocean, marine ecosystems, and dependent communities[M]//Pörtner H O, Roberts D C, Masson-Delmotte V, et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge: Cambridge University Press, 2019: 447−587.
|
| [2] |
Wells M L, Trainer V L, Smayda T J, et al. Harmful algal blooms and climate change: learning from the past and present to forecast the future[J]. Harmful Algae, 2015, 49: 68−93. doi: 10.1016/j.hal.2015.07.009
|
| [3] |
Díaz P A, Figueroa R I. Toxic algal bloom recurrence in the era of global change: lessons from the Chilean Patagonian fjords[J]. Microorganisms, 2023, 11(8): 1874. doi: 10.3390/microorganisms11081874
|
| [4] |
Alvarez S, Brown C E, Diaz M G, et al. Non-linear impacts of harmful algae blooms on the coastal tourism economy[J]. Journal of Environmental Management, 2024, 351: 119811. doi: 10.1016/j.jenvman.2023.119811
|
| [5] |
Hou Wanli, Chen Xi, Ba Menglin, et al. Characteristics of harmful algal species in the coastal waters of China from 1990 to 2017[J]. Toxins, 2022, 14(3): 160. doi: 10.3390/toxins14030160
|
| [6] |
Yu Zhiming, Tang Yingzhong, Gobler C J. Harmful algal blooms in China: history, recent expansion, current status, and future prospects[J]. Harmful Algae, 2023, 129: 102499. doi: 10.1016/j.hal.2023.102499
|
| [7] |
Yan Tian, Li Xiaodong, Tan Zhijun, et al. Toxic effects, mechanisms, and ecological impacts of harmful algal blooms in China[J]. Harmful Algae, 2022, 111: 102148. doi: 10.1016/j.hal.2021.102148
|
| [8] |
Yang Jiaping, Sun Weiqin, Sun Mingjuan, et al. Current research status of azaspiracids[J]. Marine Drugs, 2024, 22(2): 79. doi: 10.3390/md22020079
|
| [9] |
Furey A, O'Doherty S, O'Callaghan K, et al. Azaspiracid poisoning (AZP) toxins in shellfish: toxicological and health considerations[J]. Toxicon, 2010, 56(2): 173−190. doi: 10.1016/j.toxicon.2009.09.009
|
| [10] |
Tebben J, Zurhelle C, Tubaro A, et al. Structure and toxicity of AZA-59, an azaspiracid shellfish poisoning toxin produced by Azadinium poporum (Dinophyceae)[J]. Harmful Algae, 2023, 124: 102388. doi: 10.1016/j.hal.2023.102388
|
| [11] |
Twiner M J, Rehmann N, Hess P, et al. Azaspiracid shellfish poisoning: a review on the chemistry, ecology, and toxicology with an emphasis on human health impacts[J]. Marine Drugs, 2008, 6(2): 39−72. doi: 10.3390/md6020039
|
| [12] |
Otero P, Silva M. Emerging marine biotoxins in European waters: potential risks and analytical challenges[J]. Marine Drugs, 2022, 20(3): 199. doi: 10.3390/md20030199
|
| [13] |
Percopo I, Siano R, Rossi R, et al. A new potentially toxic Azadinium species (Dinophyceae) from the Mediterranean Sea, A. dexteroporum sp. nov[J]. Journal of Phycology, 2013, 49(5): 950−966.
|
| [14] |
Tillmann U. Harmful algal species fact sheet: amphidomataceae[M]//Shumway S E, Burkholder J M, Morton S L. Harmful Algal Blooms: A Compendium Desk Reference. Hoboken: Wiley, 2018: 575−582.
|
| [15] |
Takahashi K, Lum W M, Benico G, et al. Toxigenic strains of Azadinium poporum (Amphidomataceae, Dinophyceae) from Japan and Vietnam, with first reports of A. poporum (ribotype A) and A. trinitatum in Asian Pacific[J]. Phycological Research, 2021, 69(3): 175−187. doi: 10.1111/pre.12455
|
| [16] |
Liu Minlu, Tillmann U, Ding Guangmao, et al. Metabarcoding revealed a high diversity of Amphidomataceae (Dinophyceae) and the seasonal distribution of their toxigenic species in the Taiwan Strait[J]. Harmful Algae, 2023, 124: 102404. doi: 10.1016/j.hal.2023.102404
|
| [17] |
李卫国. 北部湾海域浮游植物群落结构及其分子多样性研究[D]. 广州: 暨南大学, 2022.
Li Weiguo. Phytoplankton community structure and molecular diversity in Beibu Gulf[D]. Guangzhou: Jinan University, 2022.
|
| [18] |
Luo Zhaohe, Krock B, Mertens K N, et al. Adding new pieces to the Azadinium (Dinophyceae) diversity and biogeography puzzle: non-toxigenic Azadinium zhuanum sp. nov. from China, toxigenic A. poporum from the Mediterranean, and a non-toxigenic A. dalianense from the French Atlantic[J]. Harmful Algae, 2017, 66: 65−78. doi: 10.1016/j.hal.2017.05.001
|
| [19] |
赵丽叶, 邱江兵, 王桂祥, 等. 温度、盐度和光照强度对腹孔环胺藻生长与产毒的影响[J]. 中国海洋大学学报, 2025, 55(7): 38−47. doi: 10.16441/j.cnki.hdxb.20240129
Zhao Liye, Qiu Jiangbing, Wang Guixiang, et al. Effect of temperature, salinity and light intensity on the growth and toxin production of Azadinium poporum[J]. Periodical of Ocean University of China, 2025, 55(7): 38−47. doi: 10.16441/j.cnki.hdxb.20240129
|
| [20] |
Ardura A, Zaiko A, Martinez J L, et al. eDNA and specific primers for early detection of invasive species–A case study on the bivalve Rangia cuneata, currently spreading in Europe[J]. Marine Environmental Research, 2015, 112: 48−55. doi: 10.1016/j.marenvres.2015.09.013
|
| [21] |
Liu Qi, Zhang Yun, Wu Han, et al. A review and perspective of eDNA application to eutrophication and HAB control in freshwater and marine ecosystems[J]. Microorganisms, 2020, 8(3): 417. doi: 10.3390/microorganisms8030417
|
| [22] |
Hänfling B, Lawson Handley L, Read D S, et al. Environmental DNA metabarcoding of lake fish communities reflects long‐term data from established survey methods[J]. Molecular Ecology, 2016, 25(13): 3101−3119. doi: 10.1111/mec.13660
|
| [23] |
Banerji A, Bagley M, Elk M, et al. Spatial and temporal dynamics of a freshwater eukaryotic plankton community revealed via 18S rRNA gene metabarcoding[J]. Hydrobiologia, 2018, 818(1): 71−86. doi: 10.1007/s10750-018-3593-0
|
| [24] |
Hu Yuxin, Zhang Jing, Huang Jie, et al. The biogeography of colonial volvocine algae in the Yangtze River basin[J]. Frontiers in Microbiology, 2023, 14: 1078081. doi: 10.3389/fmicb.2023.1078081
|
| [25] |
Riccardi N. Selectivity of plankton nets over mesozooplankton taxa: implications for abundance, biomass and diversity estimation[J]. Journal of Limnology, 2010, 69(2): 287. doi: 10.4081/jlimnol.2010.287
|
| [26] |
Barve N, Barve V, Jiménez-Valverde A, et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling[J]. Ecological Modelling, 2011, 222(11): 1810−1819. doi: 10.1016/j.ecolmodel.2011.02.011
|
| [27] |
Brun P, Kiørboe T, Licandro P, et al. The predictive skill of species distribution models for plankton in a changing climate[J]. Global Change Biology, 2016, 22(9): 3170−3181. doi: 10.1111/gcb.13274
|
| [28] |
Elith J, Leathwick J R. Species distribution models: ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40: 677−697. doi: 10.1146/annurev.ecolsys.110308.120159
|
| [29] |
Zhao Ziyi, Xiao Nengwen, Shen Mei, et al. Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: a case study with Quasipaa boulengeri in China[J]. Science of the Total Environment, 2022, 842: 156867. doi: 10.1016/j.scitotenv.2022.156867
|
| [30] |
Kumar S, Stohlgren T J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia[J]. Journal of Ecology and Natural Environment, 2009, 1(4): 94−98.
|
| [31] |
Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231−259. doi: 10.1016/j.ecolmodel.2005.03.026
|
| [32] |
Klaassen M, Marques T A, Alves F, et al. Trends in marine species distribution models: a review of methodological advances and future challenges[J]. Ecography, 2025: e07702. (查阅网上资料, 未找到对应的卷期号信息, 请确认)
|
| [33] |
Assis J, Serrão E A, Claro B, et al. Climate‐driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga[J]. Molecular Ecology, 2014, 23(11): 2797−2810. doi: 10.1111/mec.12772
|
| [34] |
Hu Wenjia, Su Shangke, Mohamed H F, et al. Assessing the global distribution and risk of harmful microalgae: a focus on three toxic Alexandrium dinoflagellates[J]. Science of the Total Environment, 2024, 948: 174767. doi: 10.1016/j.scitotenv.2024.174767
|
| [35] |
Su Shangke, Luo Zhaohe, Kang Jianhua, et al. How does climate change influence the regional ecological-social risks of harmful dinoflagellates? A predictive study of China's coastal waters[J]. Global Change Biology, 2025, 31(7): e70323. doi: 10.1111/gcb.70323
|
| [36] |
李宝贤, 李国梁, 姚海芹, 等. 基于MaxEnt模型和ArcGIS对巨藻在我国适生情况的分析[J]. 渔业科学进展, 2023, 44(2): 118−126. doi: 10.19663/j.issn2095-9869.20211214002
Li Baoxian, Li Guoliang, Yao Haiqin, et al. Potential geographic distribution of Macrocystis pyrifera in China based on MaxEnt model and ArcGIS[J]. Progress in Fishery Sciences, 2023, 44(2): 118−126. doi: 10.19663/j.issn2095-9869.20211214002
|
| [37] |
Lin Xiangyuan, Hu Wenjia, Hii K S, et al. Climate change drives long-term spatiotemporal shifts in red Noctiluca scintillans blooms along China's coast[J]. Molecular Ecology, 2025, 34(7): e17709. doi: 10.1111/mec.17709
|
| [38] |
Aiello‐Lammens M E, Boria R A, Radosavljevic A, et al. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models[J]. Ecography, 2015, 38(5): 541−545. doi: 10.1111/ecog.01132
|
| [39] |
Liu Jingdi, Zuo Leyi, Zhang Guicheng, et al. Environmental factors influence on phytoplankton community distribution in the eastern Indian Ocean[J]. Marine Environmental Research, 2025, 211: 107377. doi: 10.1016/j.marenvres.2025.107377
|
| [40] |
Yu Zhida, Ouyang Zhiyuan, Zheng Chuanyang, et al. Multivariate environmental factors and seasonal spatial dynamics affecting the phytoplankton community in Yazhou Bay, South China Sea[J]. Water, 2024, 16(22): 3181. doi: 10.3390/w16223181
|
| [41] |
Kholssi R, Lougraimzi H, Moreno-Garrido I. Influence of salinity and temperature on the growth, productivity, photosynthetic activity and intracellular ROS of two marine microalgae and cyanobacteria[J]. Marine Environmental Research, 2023, 186: 105932. doi: 10.1016/j.marenvres.2023.105932
|
| [42] |
Liu Fangchen, Gaul L, Giometto A, et al. Colimitation of light and nitrogen on algal growth revealed by an array microhabitat platform[J]. arXiv: 2307.02646, 2023. (查阅网上资料, 请核对文献类型及格式)
|
| [43] |
Gonzalez‐Aragon D, Rivadeneira M M, Lara C, et al. A species distribution model of the giant kelp Macrocystis pyrifera: worldwide changes and a focus on the Southeast Pacific[J]. Ecology and Evolution, 2024, 14(3): e10901. doi: 10.1002/ece3.10901
|
| [44] |
Forsblom L, Engström-Öst J, Lehtinen S, et al. Environmental variables driving species and genus level changes in annual plankton biomass[J]. Journal of Plankton Research, 2019, 41(6): 925−938. doi: 10.1093/plankt/fbz063
|
| [45] |
Eyring V, Bony S, Meehl G A, et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016
|
| [46] |
O’Neill B C, Kriegler E, Ebi K L, et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century[J]. Global Environmental Change, 2017, 42: 169−180. doi: 10.1016/j.gloenvcha.2015.01.004
|
| [47] |
孟雅丽, 段克勤, 尚溦, 等. 基于CMIP6模式数据的1961—2100年青藏高原地表气温时空变化分析[J]. 冰川冻土, 2022, 44(1): 24−33. doi: 10.7522/j.issn.1000-0240.2022.0017
Meng Yali, Duan Keqin, Shang Wei, et al. Analysis on spatiotemporal variations of near-surface air temperature over the Tibetan Plateau from 1961 to 2100 based on CMIP6 models’data[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 24−33. doi: 10.7522/j.issn.1000-0240.2022.0017
|
| [48] |
Muscarella R, Galante P J, Soley‐Guardia M, et al. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models[J]. Methods in Ecology and Evolution, 2014, 5(11): 1198−1205. doi: 10.1111/2041-210X.12261
|
| [49] |
Kass J M, Muscarella R, Galante P J, et al. ENMeval 2.0: redesigned for customizable and reproducible modeling of species’ niches and distributions[J]. Methods in Ecology and Evolution, 2021, 12(9): 1602−1608. doi: 10.1111/2041-210X.13628
|
| [50] |
Akaike H. Information theory and an extension of the maximum likelihood principle[M]//Parzen E, Tanabe K, Kitagawa G. Selected Papers of Hirotugu Akaike. New York: Springer, 1998: 199-213.
|
| [51] |
Sutherland C, Hare D, Johnson P J, et al. Practical advice on variable selection and reporting using Akaike information criterion[J]. Proceedings of the Royal Society B: Biological Sciences, 2023, 290(2007): 20231261. doi: 10.1098/rspb.2023.1261
|
| [52] |
Luckett D J, Laber E B, El-Kamary S S, et al. Receiver operating characteristic curves and confidence bands for support vector machines[J]. Biometrics, 2021, 77(4): 1422−1430. doi: 10.1111/biom.13365
|
| [53] |
Phillips S J, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2): 161−175. doi: 10.1111/j.0906-7590.2008.5203.x
|
| [54] |
Merow C, Smith M J, Silander Jr J A. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter[J]. Ecography, 2013, 36(10): 1058−1069. doi: 10.1111/j.1600-0587.2013.07872.x
|
| [55] |
王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4): 365−372.
Wang Yunsheng, Xie Bingyan, Wan Fanghao, et al. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J]. Biodiversity Science, 2007, 15(4): 365−372.
|
| [56] |
Wang Changyou, Zheng Ping, Gu Haifeng, et al. Predicting ecological distribution of the toxic dinoflagellate Alexandrium minutum in China Sea using ecological niche modeling[J]. Journal of Ocean University of China, 2023, 22(4): 1119−1128. doi: 10.1007/s11802-023-5422-y
|
| [57] |
张丹华, 胡远满, 刘淼. 基于Maxent生态位模型的互花米草在我国沿海的潜在分布[J]. 应用生态学报, 2019, 30(7): 2329−2337. doi: 10.13287/j.1001-9332.201907.014
Zhang Danhua, Hu Yuanman, Liu Miao. Potential distribution of Spartinal alterniflora in China coastal areas based on Maxent niche model[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2329−2337. doi: 10.13287/j.1001-9332.201907.014
|
| [58] |
Hijmans R J, Barbosa M, Bivand R, et al. Terra: spatial data analysis[CP/OL]. R Package Version 1.8-86. https://CRAN.R-project.org/package=terra, 2025-11-28. (查阅网上资料,未找到引用日期信息,请确认)
|
| [59] |
Hijmans R J, Karney C, Williams E, et al. Geosphere: spherical trigonometry[CP/OL]. R Package Version 1.5-20. https://CRAN.R-project.org/package=geosphere, 2024-10-04. (查阅网上资料,未找到引用日期信息,请确认)
|
| [60] |
Jauffrais T, Séchet V, Herrenknecht C, et al. Effect of environmental and nutritional factors on growth and azaspiracid production of the dinoflagellate Azadinium spinosum[J]. Harmful Algae, 2013, 27: 138−148. doi: 10.1016/j.hal.2013.05.009
|
| [61] |
Dai Xinfeng, Bill B D, Adams N G, et al. The effect of temperature and salinity on growth rate and azaspiracid cell quotas in two strains of Azadinium poporum (Dinophyceae) from Puget Sound, Washington State[J]. Harmful Algae, 2019, 89: 101665. doi: 10.1016/j.hal.2019.101665
|
| [62] |
Lan Jiaxin, Liu Pengfei, Hu Xi, et al. Harmful algal blooms in eutrophic marine environments: causes, monitoring, and treatment[J]. Water, 2024, 16(17): 2525. doi: 10.3390/w16172525
|
| [63] |
Lee T C H, Kwok O T, Ho K C, et al. Effects of different nitrate and phosphate concentrations on the growth and toxin production of an Alexandrium tamarense strain collected from Drake Passage[J]. Marine Environmental Research, 2012, 81: 62−69. doi: 10.1016/j.marenvres.2012.08.009
|
| [64] |
Abassi S, Kim H S, Bui Q T N, et al. Effects of nitrate on the saxitoxins biosynthesis revealed by sxt genes in the toxic dinoflagellate Alexandrium pacificum (group IV)[J]. Harmful Algae, 2023, 127: 102473. doi: 10.1016/j.hal.2023.102473
|
| [65] |
Zhang Yaqun, Lin Xin, Shi Xinguo, et al. Metatranscriptomic signatures associated with phytoplankton regime shift from diatom dominance to a dinoflagellate bloom[J]. Frontiers in Microbiology, 2019, 10: 590. doi: 10.3389/fmicb.2019.00590
|
| [66] |
Thomas M K, Kremer C T, Klausmeier C A, et al. A global pattern of thermal adaptation in marine phytoplankton[J]. Science, 2012, 338(6110): 1085−1088. doi: 10.1126/science.1224836
|
| [67] |
Tillmann U, Gottschling M, Nézan E, et al. First records of Amphidoma languida and Azadinium dexteroporum (Amphidomataceae, Dinophyceae) from the irminger sea off Iceland[J]. Marine Biodiversity Records, 2015, 8: e142. doi: 10.1017/S1755267215001128
|
| [68] |
Benedetti F, Vogt M, Elizondo U H, et al. Major restructuring of marine plankton assemblages under global warming[J]. Nature Communications, 2021, 12(1): 5226. doi: 10.1038/s41467-021-25385-x
|
| [69] |
中国气象局气候变化中心. 中国气候变化蓝皮书(2025)[M]. 北京: 科学出版社, 2025.
China Meteorological Administration, Climate Change Center. Blue Book on Climate Change in China (2025)[M]. Beijing: Science Press, 2025. (查阅网上资料, 未找到作者对应的英文翻译, 请确认)
|
| [70] |
Barton A D, Irwin A J, Finkel Z V, et al. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11): 2964−2969. doi: 10.1073/pnas.1519080113
|
| [71] |
Borges F O, Lopes V M, Santos C F, et al. Impacts of climate change on the biogeography of three amnesic shellfish toxin producing diatom species[J]. Toxins, 2022, 15(1): 9. doi: 10.3390/toxins15010009
|
| [72] |
Boulangeat I, Gravel D, Thuiller W. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances[J]. Ecology Letters, 2012, 15(6): 584−593. doi: 10.1111/j.1461-0248.2012.01772.x
|
| [73] |
Harrison J B, Sunday J M, Rogers S M. Predicting the fate of eDNA in the environment and implications for studying biodiversity[J]. Proceedings of the Royal Society B: Biological Sciences, 2019, 286(1915): 20191409. doi: 10.1098/rspb.2019.1409
|
| [74] |
Da Silva Neto J G, Sutton W B, Spear S F, et al. Integrating species distribution and occupancy modeling to study hellbender (Cryptobranchus alleganiensis) occurrence based on eDNA surveys[J]. Biological Conservation, 2020, 251: 108787. doi: 10.1016/j.biocon.2020.108787
|
| [75] |
Rossi R, Dell’Aversano C, Krock B, et al. Mediterranean Azadinium dexteroporum (Dinophyceae) produces six novel azaspiracids and azaspiracid-35: a structural study by a multi-platform mass spectrometry approach[J]. Analytical and Bioanalytical Chemistry, 2017, 409(4): 1121−1134. doi: 10.1007/s00216-016-0037-4
|