| Citation: | Bao Yingxuan,Ye Yingying,Ma Jiale, et al. The complete mitochondrial genome of Eodemus subtilis (Decapoda: Brachyura: Portunidae) and its phylogenetic analysis[J]. Haiyang Xuebao,2025, 48(x):1–15 |
| [1] |
张小蜂, 徐一扬. 中国潮间带螃蟹生态图鉴[M]. 重庆: 重庆大学出版社, 2023: 650.
Zhang Xiaofeng, Xu Yiyang. Chinese Intertidal Brachyuran Crabs Illustrated[M]. Chongqing: Chongqing University Press, 2023: 650.
|
| [2] |
Wong K J H, Leung K M Y, Chan B K K. On the identities of three common shallow-water swimming crabs Portunus hastatoides fabricius, 1798, P. dayawanensis Chen, 1986, and P. pseudohastatoides Yang and Tang, 2006 (Crustacea: Decapoda: Portunidae): essentials for benthic ecological monitoring and biodiversity studies[J]. Zoological Studies, 2010, 49(5): 669−680.
|
| [3] |
Koch M, Spiridonov V A, Ďuriš Z. Revision of the generic system for the swimming crab subfamily Portuninae (Decapoda: Brachyura: Portunidae) based on molecular and morphological analyses[J]. Zoological Journal of the Linnean Society, 2023, 197(1): 127−175. doi: 10.1093/zoolinnean/zlac017
|
| [4] |
Nguyen T S, Ng P K L. A revision of the swimming crabs of the Indo-West Pacific Xiphonectes hastatoides (Fabricius, 1798) species complex (Crustacea: Brachyura: Portunidae)[J]. Arthropoda Selecta, 2021, 30(3): 386−404. doi: 10.15298/arthsel.30.3.11
|
| [5] |
Hickerson M J, Cunningham C W. Dramatic mitochondrial gene rearrangements in the hermit crab Pagurus longicarpus (Crustacea, Anomura)[J]. Molecular Biology and Evolution, 2000, 17(4): 639−644. doi: 10.1093/oxfordjournals.molbev.a026342
|
| [6] |
师国慧, 崔朝霞. 蛙蟹线粒体全基因组序列分析及其分类地位[C]//“全球变化下的海洋与湖沼生态安全”学术交流会论文摘要集. 南京: 中国海洋湖沼学会, 2014: 1.
Shi Guohui, Cui Zhaoxia. Analysis of the complete mitochondrial genome sequence of frog crabs and their taxonomic status[C]//“Marine and Limnological Ecological Security under Global Change”Collection of Academic Conference Paper Abstracts. Nanjing: Chinese Society of Oceanography and Limnology, 2014: 1.
|
| [7] |
王兴强, 曹梅, 阎斌伦, 等. 三疣梭子蟹综合养殖技术[J]. 水产科学, 2009, 28(2): 105−108.
Wang Xingqiang, Cao Mei, Yan Binlun, et al. Integrated culture of swimming crab Portunus trituberculatus[J]. Fisheries Science, 2009, 28(2): 105−108.
|
| [8] |
Chen Fangyi, Wang Kejian. Characterization of the innate immunity in the mud crab Scylla paramamosain[J]. Fish & Shellfish Immunology, 2019, 93: 436−448.
|
| [9] |
Lü Jiayin, Xia Liping, Liu Xiaojuan, et al. The mitochondrial genome of Grapsus albolineatus (Decapoda: Brachyura: Grapsidae) and phylogenetic associations in Brachyura[J]. Scientific Reports, 2022, 12(1): 2104. doi: 10.1038/s41598-022-06080-3
|
| [10] |
Tan M H, Gan Hanming, Lee Y P, et al. Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition[J]. Scientific Reports, 2019, 9(1): 10756. doi: 10.1038/s41598-019-47145-0
|
| [11] |
Ballard J W O, Whitlock M C. The incomplete natural history of mitochondria[J]. Molecular Ecology, 2004, 13(4): 729−744. doi: 10.1046/j.1365-294X.2003.02063.x
|
| [12] |
Saccone C, Gissi C, Lanave C, et al. Evolution of the mitochondrial genetic system: an overview[J]. Gene, 2000, 261(1): 153−159. doi: 10.1016/S0378-1119(00)00484-4
|
| [13] |
迪丽娜·茹斯坦木, 袁晓倩, 张琪, 等. 基于线粒体基因组数据的裂腹鱼类系统发育研究[J]. 中国水产科学, 2022, 29(6): 781−791.
Rustam D, Yuan Xiaoqian, Zhang Qi, et al. Study on the phylogeny of Schizothoracids based on complete mitochondrial genome[J]. Journal of Fishery Sciences of China, 2022, 29(6): 781−791.
|
| [14] |
Sant’Anna B S, Santos D M, Marchi M R R, et al. Surface-sediment and hermit-crab contamination by butyltins in southeastern Atlantic estuaries after ban of TBT-based antifouling paints[J]. Environmental Science and Pollution Research, 2014, 21(10): 6516−6524. doi: 10.1007/s11356-014-2521-8
|
| [15] |
Ma Hongyu, Ma Chunyan, Li Chenhong, et al. First mitochondrial genome for the red crab (Charybdis feriata) with implication of phylogenomics and population genetics[J]. Scientific Reports, 2015, 5(1): 11524. doi: 10.1038/srep11524
|
| [16] |
Ma Hongyu, Ma Chunyan, Li Xincang, et al. The complete mitochondrial genome sequence and gene organization of the mud crab (Scylla paramamosain) with phylogenetic consideration[J]. Gene, 2013, 519(1): 120−127. doi: 10.1016/j.gene.2013.01.028
|
| [17] |
Yamauchi M M, Miya M U, Nishida M. Complete mitochondrial DNA sequence of the swimming crab, Portunus trituberculatus (Crustacea: Decapoda: Brachyura)[J]. Gene, 2003, 311: 129−135. doi: 10.1016/S0378-1119(03)00582-1
|
| [18] |
Wang Guizhong, Kong Xianghui, Wang Kejian, et al. Variation of specific proteins, mitochondria and fatty acid composition in gill of Scylla serrata (Crustacea, Decapoda) under low temperature adaptation[J]. Journal of Experimental Marine Biology and Ecology, 2007, 352(1): 129−138. doi: 10.1016/j.jembe.2007.07.017
|
| [19] |
张茜茜, 朱志煌, 王健鑫, 等. 梭子蟹科线粒体基因组特征与系统发育遗传分析[J]. 渔业研究, 2025, 47(4): 408−420.
Zhang Xixi, Zhu Zhihuang, Wang Jianxin, et al. Mitochondrial genome characteristics and phylogenetic analysis in Portunidae[J]. Journal of Fisheries Research, 2025, 47(4): 408−420.
|
| [20] |
Xie Zhuofang, Lai Tinghe, Waiho K, et al. Complete mitochondrial genome of the spiny rock crab Thalamita crenata (rüppell, 1830) (Crustacea: Decapoda: Portunidae) from China coast and its phylogeny[J]. Mitochondrial DNA Part B, 2018, 3(2): 1019−1020. doi: 10.1080/23802359.2018.1508384
|
| [21] |
Chen Shifu, Zhou Yanqing, Chen Yaru, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884−i890. doi: 10.1093/bioinformatics/bty560
|
| [22] |
Jin Jianjun, Yu Wenbin, Yang Junbo, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biology, 2020, 21(1): 241. doi: 10.1186/s13059-020-02154-5
|
| [23] |
Meng Guanliang, Li Yiyuan, Yang Chentao, et al. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization[J]. Nucleic Acids Research, 2019, 47(11): e63. doi: 10.1093/nar/gkz173
|
| [24] |
Bernt M, Donath A, Jühling F, et al. MITOS: improved de novo metazoan mitochondrial genome annotation[J]. Molecular Phylogenetics and Evolution, 2013, 69(2): 313−319. doi: 10.1016/j.ympev.2012.08.023
|
| [25] |
Lu J, Salzberg S L. SkewIT: the Skew Index Test for large-scale GC Skew analysis of bacterial genomes[J]. PLoS Computational Biology, 2020, 16(12): e1008439. doi: 10.1371/journal.pcbi.1008439
|
| [26] |
Grant J R, Stothard P. The CGView Server: a comparative genomics tool for circular genomes[J]. Nucleic Acids Research, 2008, 36(S2): W181−W184.
|
| [27] |
Batut B, van den Beek M, Doyle M A, et al. RNA-Seq data analysis in galaxy[J]. Methods in Molecular Biology, 2021, 2284: 367−392.
|
| [28] |
Kerpedjiev P, Hammer S, Hofacker I L. Forna (force-directed RNA): simple and effective online RNA secondary structure diagrams[J]. Bioinformatics, 2015, 31(20): 3377−3379. doi: 10.1093/bioinformatics/btv372
|
| [29] |
Kumar S, Stecher G, Suleski M, et al. MEGA12: molecular evolutionary genetic analysis version 12 for adaptive and green computing[J]. Molecular Biology and Evolution, 2024, 41(12): msae263. doi: 10.1093/molbev/msae263
|
| [30] |
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets[J]. Molecular Biology and Evolution, 2017, 34(12): 3299−3302. doi: 10.1093/molbev/msx248
|
| [31] |
Xiang Chuanyu, Gao Fangluan, Jakovlić I, et al. Using PhyloSuite for molecular phylogeny and tree‐based analyses[J]. iMeta, 2023, 2(1): e87. doi: 10.1002/imt2.87
|
| [32] |
刘慧, 张辉贤, 刘馨蔓, 等. 南海小叶海蛞蝓(Phyllidiella nanhaiensis sp. nov. )线粒体基因组特征与系统进化[J]. 热带海洋学报, 2025, 44(1): 1−8.
Liu Hui, Zhang Huixian, Liu Xinman, et al. Complete mitogenome data of sea slug Phyllidiella nanhaiensis sp. nov. and its phylogenetic implications[J]. Journal of Tropical Oceanography, 2025, 44(1): 1−8.
|
| [33] |
Letunic I, Bork P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool[J]. Nucleic Acids Research, 2024, 52(W1): W78−W82. doi: 10.1093/nar/gkae268
|
| [34] |
Kumar S, Stecher G, Suleski M, et al. TimeTree: a resource for timelines, timetrees, and divergence times[J]. Molecular Biology and Evolution, 2017, 34(7): 1812−1819. doi: 10.1093/molbev/msx116
|
| [35] |
Drummond A J, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees[J]. BMC Evolutionary Biology, 2007, 7(1): 214. doi: 10.1186/1471-2148-7-214
|
| [36] |
Rambaut A, Drummond A J, Xie Dong, et al. Posterior summarization in Bayesian phylogenetics using Tracer 1.7[J]. Systematic Biology, 2018, 67(5): 901−904. doi: 10.1093/sysbio/syy032
|
| [37] |
Xin Zhaozhe, Liu Yu, Zhang Daizhen, et al. Complete mitochondrial genome of Clistocoeloma sinensis (Brachyura: Grapsoidea): gene rearrangements and higher-level phylogeny of the Brachyura[J]. Scientific Reports, 2017, 7(1): 4128. doi: 10.1038/s41598-017-04489-9
|
| [38] |
Wang Zhengfei, Wang Ziqian, Shi Xuejia, et al. Complete mitochondrial genome of Parasesarma affine (Brachyura: Sesarmidae): gene rearrangements in Sesarmidae and phylogenetic analysis of the Brachyura[J]. International Journal of Biological Macromolecules, 2018, 118: 31−40. doi: 10.1016/j.ijbiomac.2018.06.056
|
| [39] |
Ki J S, Dahms H U, Hwang J S, et al. The complete mitogenome of the hydrothermal vent crab Xenograpsus testudinatus (Decapoda, Brachyura) and comparison with brachyuran crabs[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2009, 4(4): 290−299. doi: 10.1016/j.cbd.2009.07.002
|
| [40] |
Meng Xianliang, Jia Fulong, Zhang Xiaohui, et al. Complete sequence and characterization of mitochondrial genome in the swimming crab Portunus sanguinolentus (Herbst, 1783) (Decapoda, Brachyura, Portunidae)[J]. Mitochondrial DNA Part A, 2016, 27(4): 3052−3053. doi: 10.3109/19401736.2015.1063130
|
| [41] |
Wang Ziqian, Shi Xuejia, Guo Huayun, et al. Characterization of the complete mitochondrial genome of Uca lacteus and comparison with other Brachyuran crabs[J]. Genomics, 2020, 112(1): 10−19. doi: 10.1016/j.ygeno.2019.06.004
|
| [42] |
Tang Boping, Liu Yu, Xin Zhaozhe, et al. Characterisation of the complete mitochondrial genome of Helice wuana (Grapsoidea: Varunidae) and comparison with other Brachyuran crabs[J]. Genomics, 2018, 110(4): 221−230. doi: 10.1016/j.ygeno.2017.10.001
|
| [43] |
Zhang Yuyang, Ma Yunqi, Yu Huanxi, et al. Deciphering codon usage patterns in the mitochondrial genome of the Oryza species[J]. Agronomy, 2024, 14(11): 2722. doi: 10.3390/agronomy14112722
|
| [44] |
Zhang Ying, Gong Li, Lu Xinting, et al. Gene rearrangements in the mitochondrial genome of Chiromantes eulimene (Brachyura: Sesarmidae) and phylogenetic implications for Brachyura[J]. International Journal of Biological Macromolecules, 2020, 162: 704−714. doi: 10.1016/j.ijbiomac.2020.06.196
|
| [45] |
孟磊, 韦丽明, 龚理, 等. 长脚蟹科首个线粒体基因组测定及系统发育分析[J]. 南方农业学报, 2023, 54(1): 250−260.
Meng Lei, Wei Liming, Gong Li, et al. The first complete mitochondrial genome of Goneplacidae (Decapoda: Brachyura) and its phylogenetic positionamong Brachyura[J]. Journal of Southern Agriculture, 2023, 54(1): 250−260.
|
| [46] |
Gong Li, Liu Bingjian, Liu L, et al. The complete mitochondrial genome of Terapon jarbua (Centrarchiformes: Terapontidae) and comparative analysis of the control region among eight centrarchiformes species[J]. Russian Journal of Marine Biology, 2019, 45(2): 137−144. doi: 10.1134/S1063074019020068
|
| [47] |
Romanova E V, Aleoshin V V, Kamaltynov R M, et al. Evolution of mitochondrial genomes in Baikalian amphipods[J]. BMC Genomics, 2016, 17(S14): 1016. doi: 10.1186/s12864-016-3357-z
|
| [48] |
Ma Hongyu, Ma Chunyan, Li Xincang, et al. The complete mitochondrial genome sequence and gene organization of the mud crab (Scylla paramamosain) with phylogenetic consideration[J]. Gene, 2013, 519(1): 120-127. (查阅网上资料, 本条文献与第16条文献重复, 请确认)
|
| [49] |
Bian Dandan, Tang Sheng, Wang Songnan, et al. Comparative analysis of Metopograpsus quadridentatus (Crustacea: Decapoda: Grapsidae) mitochondrial genome reveals gene rearrangement and phylogeny[J]. Animals, 2025, 15(8): 1162. doi: 10.3390/ani15081162
|
| [50] |
Segawa R D, Aotsuka T. The mitochondrial genome of the Japanese freshwater crab, Geothelphusa dehaani (Crustacea: Brachyura): evidence for its evolution via gene duplication[J]. Gene, 2005, 355: 28−39. doi: 10.1016/j.gene.2005.05.020
|
| [51] |
Ji Yongkun, Wang An, Lu Xiuling, et al. Mitochondrial genomes of two brachyuran crabs (Crustacea: Decapoda) and phylogenetic analysis[J]. Journal of Crustacean Biology, 2014, 34(4): 494−503. doi: 10.1163/1937240X-00002252
|
| [52] |
Lavrov D V, Boore J L, Brown W M. The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus[J]. Molecular Biology and Evolution, 2000, 17(5): 813−824. doi: 10.1093/oxfordjournals.molbev.a026360
|
| [53] |
Conrad I, Craft A, Thurman C L, et al. The complete mitochondrial genome of the red-jointed brackish-water fiddler crab Minuca minax (LeConte 1855) (Brachyura: Ocypodidae): new family gene order, and purifying selection and phylogenetic informativeness of protein coding genes[J]. Genomics, 2021, 113(1): 565−572. doi: 10.1016/j.ygeno.2020.09.050
|
| [54] |
Xie Zhuofang, Fazhan H, Li Xincang, et al. Identification of the complete mitochondrial genome of Monomia gladiator (Decapoda: Brachyura: Portunidae) and its phylogenetic relationship[J]. Mitochondrial DNA Part B, 2018, 3(1): 200−201. doi: 10.1080/23802359.2018.1437827
|
| [55] |
Huang Y H, Shih H T. Diversity in the Taiwanese swimming crabs (Crustacea: Brachyura: Portunidae) estimated through DNA barcodes, with descriptions of 14 new records[J]. Zoological Studies, 2021, 60: e60.
|
| [56] |
Zhong Shengping, Zhao Yanfei, Zhang Qin. The complete mitochondrial genome of Thalamita sima (Decapoda: Portunidae)[J]. Mitochondrial DNA Part B, 2018, 3(2): 723−724. doi: 10.1080/23802359.2018.1483777
|
| [57] |
Lu Xinting, Gong Li, Zhang Ying, et al. The complete mitochondrial genome of Calappa bilineata: the first representative from the family Calappidae and its phylogenetic position within Brachyura[J]. Genomics, 2020, 112(3): 2516−2523. doi: 10.1016/j.ygeno.2020.02.003
|
| [58] |
Duan Xinbing, Dong Xiangli, Li Jiji, et al. The complete mitochondrial genome of Pilumnopeus makianus (Brachyura: Pilumnidae), novel gene rearrangements, and phylogenetic relationships of Brachyura[J]. Genes, 2022, 13(11): 1943. doi: 10.3390/genes13111943
|
| [59] |
Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353−431. doi: 10.1016/S1367-9120(01)00069-4
|
| [60] |
Schubart C D, Reuschel S. A proposal for a new classification of Portunoidea and Cancroidea (Brachyura: Heterotremata) based on two independent molecular phylogenies[M]//Martin J W, Crandall K A, Felder D L. Decapod Crustacean Phylogenetics. Boca Raton: CRC Press, 2009: 533-549.
|
| [61] |
Evans N. Molecular phylogenetics of swimming crabs (Portunoidea Rafinesque, 1815) supports a revised family-level classification and suggests a single derived origin of symbiotic taxa[J]. PeerJ, 2018, 6: e4260. doi: 10.7717/peerj.4260
|
| [62] |
Spiridonov V A. An update of phylogenetic reconstructions, classification and morphological characters of extant Portunoidea Rafinesque, 1815 (Decapoda, Brachyura, Heterotremata), with a discussion of their relevance to fossil material[J]. Geologija, 2020, 63(1): 133−166. doi: 10.5474/geologija.2020.014
|
| [63] |
Yang Jinshu, Lu Bo, Chen Dianfu, et al. When did decapods invade hydrothermal vents? Clues from the Western Pacific and Indian Oceans[J]. Molecular Biology and Evolution, 2012, 30(2): 305−309. doi: 10.1093/molbev/mss224
|
| [64] |
Ellison J C, Stoddart D R. Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications[J]. Journal of Coastal Research, 1991, 7(1): 151−165.
|
| [65] |
Niu Jiaojiao, Hu Xuelei, Ip J C H, et al. Multi-omic approach provides insights into osmoregulation and osmoconformation of the crab Scylla paramamosain[J]. Scientific Reports, 2020, 10(1): 21771. doi: 10.1038/s41598-020-78351-w
|
| [66] |
Woodruff D S. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity[J]. Biodiversity and Conservation, 2010, 19(4): 919−941. doi: 10.1007/s10531-010-9783-3
|