Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
TANG jing-rong,WEI qin-sheng,ZHAO yu-hang, et al. Distributions of dissolved oxygen and hypoxic characteristics in the Bohai Sea and the northern Yellow Sea during the late summer-early autumn in 2021[J]. Haiyang Xuebao,2025, 47(x):1–14
Citation: TANG jing-rong,WEI qin-sheng,ZHAO yu-hang, et al. Distributions of dissolved oxygen and hypoxic characteristics in the Bohai Sea and the northern Yellow Sea during the late summer-early autumn in 2021[J]. Haiyang Xuebao,2025, 47(x):1–14

Distributions of dissolved oxygen and hypoxic characteristics in the Bohai Sea and the northern Yellow Sea during the late summer-early autumn in 2021

  • Received Date: 2024-09-30
  • Rev Recd Date: 2025-01-06
  • Available Online: 2025-02-17
  • Based on observations in the Bohai Sea (BS) and North Yellow Sea (NYS) obtained during the late summer and early autumn of 2021, the hypoxic characteristics and influencing factors were explored by analyzing the spatial patterns of temperature, salinity, density, dissolved oxygen (DO) and nutrients, revealing the regulation mechanisms of hydro-biogeochemical processes on the distributions of DO and hypoxia. A narrow hypoxic zone (with the minimum DO of 2.18 mg L−1) in a southwest-northeast orientation, which was characterized by a high apparent oxygen consumption (AOU) (> 4 mg L−1), was observed within the bottom cold water-dominated region in the western BS; a low-DO area with a small scope existed in the northeastern region off the Bohai Bay mouth at 10-m layer. DO concentrations in the NYS were overall higher than that in the BS, and a relatively high DO level was maintained within the Bottom Cold Water Mass (BCWM) in the central NYS, although there was a high AOU (> 2.5 mg L−1). The low-lying topography and higher stratification intensity within the bottom cold water-dominated region in the western BS provided the basis for the formation and maintenance of bottom hypoxia, and the fronts around this cold water significantly controlled the boundary and extension scope of the hypoxic zone. The low-DO area at 10-m layer in the northeastern region off the Bohai Bay mouth was caused by the uplift of the hypoxic cold water from the bottom. The presence of an anticyclonic eddy in the shallow bank of the central BS led to the formation of a DO-rich water (> 6 mg L−1) at bottom. The decomposition of organic matter and related oxygen consumption in the context of stratification was an important material basis for the formation of hypoxia in the western BS, exactly corresponding to a high-nutrient area at bottom layer. In contrast, due to the higher background levels of DO within the BCWM and the lower AOU than that in the bottom layer of the western BS, it was difficult to form hypoxia in the central NYS even under the relatively high stratification strength; moreover, the deeper water depth was another factor responsible for this situation. This study could provide a scientific basis for understanding the multi-scale variations and regulation of DO in the BS and the NYS, laying a foundation for the subsequent refined simulation and prediction of hypoxia in this sea area.
  • loading
  • [1]
    Diaz R J. Overview of hypoxia around the world[J]. Journal of Environmental Quality, 2001, 30(2): 275−281. doi: 10.2134/jeq2001.302275x
    [2]
    Levin L A, Ekau W, Gooday A J, et al. Effects of natural and human-induced hypoxia on coastal benthos[J]. Biogeosciences, 2009, 6(10): 2063−2098. doi: 10.5194/bg-6-2063-2009
    [3]
    Zhu Zhuoyi, Zhang Jing, Wu Ying, et al. Hypoxia off the Changjiang (Yangtze River) Estuary: oxygen depletion and organic matter decomposition[J]. Marine Chemistry, 2011, 125(1/4): 108−116.
    [4]
    Obenour D R, Michalak A M, Zhou Yuntao, et al. Quantifying the impacts of stratification and nutrient loading on hypoxia in the northern Gulf of Mexico[J]. Environmental Science & Technology, 2012, 46(10): 5489−5496.
    [5]
    Rabalais N N, Cai Weijun, Carstensen J, et al. Eutrophication-driven deoxygenation in the coastal ocean[J]. Oceanography, 2014, 27(1): 172−183. doi: 10.5670/oceanog.2014.21
    [6]
    Dussin R, Curchitser E N, Stock C A, et al. Biogeochemical drivers of changing hypoxia in the California Current Ecosystem[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2019, 169-170: 104590. doi: 10.1016/j.dsr2.2019.05.013
    [7]
    Cheresh J, Fiechter J. Physical and biogeochemical drivers of alongshore pH and oxygen variability in the California Current System[J]. Geophysical Research Letters, 2020, 47(19): e2020GL089553. doi: 10.1029/2020GL089553
    [8]
    Pitcher G C, Aguirre-Velarde A, Breitburg D, et al. System controls of coastal and open ocean oxygen depletion[J]. Progress in Oceanography, 2021, 197: 102613. doi: 10.1016/j.pocean.2021.102613
    [9]
    Wei Qinsheng, Yao Peng, Xu Bochao, et al. Coastal upwelling combined with the river plume regulates hypoxia in the Changjiang Estuary and adjacent inner East China Sea shelf[J]. Journal of Geophysical Research: Oceans, 2021, 126(11): e2021JC017740. doi: 10.1029/2021JC017740
    [10]
    魏皓, 田恬, 周锋, 等. 渤海水交换的数值研究-水质模型对半交换时间的模拟[J]. 青岛海洋大学学报, 2002, 32(4): 519−525.

    Wei Hao, Tian Tiao, Zhou Feng, et al. Numerical study on the water exchange of the Bohai Sea: simulation of the half‐life time by dispersion model[J]. Journal of Ocean University of Qingdao, 2002, 32(4): 519−525.
    [11]
    Li Yanfang, Wolanski E, Zhang Hua. What processes control the net currents through shallow straits? A review with application to the Bohai Strait, China[J]. Estuarine, Coastal and Shelf Science, 2015, 158: 1−11. doi: 10.1016/j.ecss.2015.03.013
    [12]
    张志锋, 贺欣, 张哲, 等. 渤海富营养化现状、机制及其与赤潮的时空耦合性[J]. 海洋环境科学, 2012, 31(4): 465−468,483. doi: 10.3969/j.issn.1007-6336.2012.04.001

    Zhang Zhifeng, He Xin, Zhang Zhe, et al. Eutrophication status, mechanism and its coupling effect with algae blooming in Bohai[J]. Marine Environmental Science, 2012, 31(4): 465−468,483. doi: 10.3969/j.issn.1007-6336.2012.04.001
    [13]
    Liu Sumei, Liang Wen, Guo Xinyu, et al. Biogeochemistry-ecosystem-social interactions on the Chinese continental margins[J]. Oceanologia, 2023, 65(1): 278−296. doi: 10.1016/j.oceano.2022.12.001
    [14]
    张桂成, 孙军. 渤海环境污染现状及研究进展[J]. 环境化学, 2023, 42(3): 918−930. doi: 10.7524/j.issn.0254-6108.2022101805

    Zhang Guicheng, Sun Jun. State of environmental pollution in the Bohai Sea, China: a review[J]. Environmental Chemistry, 2023, 42(3): 918−930. doi: 10.7524/j.issn.0254-6108.2022101805
    [15]
    姚志刚, 鲍献文, 李娜, 等. 北黄海冷水团季节变化特征分析[J]. 中国海洋大学学报, 2012, 42(6): 9−15.

    Yao Zhigang, Bao Xianwen, Li Na, et al. Seasonal evolution of the northern Yellow Sea cold water mass[J]. Periodical of Ocean University of China, 2012, 42(6): 9−15.
    [16]
    周锋, 黄大吉, 苏纪兰. 夏季渤海温跃层下的双中心冷水结构的数值模拟[J]. 科学通报, 2009, 54(11): 1591-1599.

    Zhou Feng, Huang Daji, Su Jilan. Numerical simulation of the dual-core structure of the Bohai Sea cold bottom water in Summer[J]. Chinese Science Bulletin, 2009, 54(23): 4520-4528.
    [17]
    Zhou Feng, Huang Daji, Xue Huijie, et al. Circulations associated with cold pools in the Bohai Sea on the Chinese continental shelf[J]. Continental Shelf Research, 2017, 137: 25−38. doi: 10.1016/j.csr.2017.02.005
    [18]
    于非, 张志欣, 刁新源, 等. 黄海冷水团演变过程及其与邻近水团关系的分析[J]. 海洋学报, 2006, 28(5): 26−34. doi: 10.3321/j.issn:0253-4193.2006.05.003

    Yu Fei, Zhang Zhixin, Diao Xinyuan, et al. Analysis of evolution of the Huanghai Sea Cold Water Mass and its relationship with adjacent water masses[J]. Haiyang Xuebao, 2006, 28(5): 26−34. doi: 10.3321/j.issn:0253-4193.2006.05.003
    [19]
    赵保仁. 北黄海冷水团环流结构探讨──潮混合锋对环流结构的影响[J]. 海洋与湖沼, 1996, 27(4): 429−435. doi: 10.3321/j.issn:0029-814X.1996.04.014

    Zhao Baoren. A study of the circulations of the northern Yellow Sea cold water mass (NYSCWM)-Effects of tidal mixing on them[J]. Oceanologia et Limnologia Sinica, 1996, 27(4): 429−435. doi: 10.3321/j.issn:0029-814X.1996.04.014
    [20]
    赵保仁, 曹德明, 李徽翡, 等. 渤海的潮混合特征及潮汐锋现象[J]. 海洋学报, 2001, 23(4): 113−118. doi: 10.3321/j.issn:0253-4193.2001.04.015

    Zhao Baoren, Cao Deming, Li Huifei, et al. Tidal mixing characters and tidal fronts phenomenons in the Bohai Sea[J]. Haiyang Xuebao, 2001, 23(4): 113−118. doi: 10.3321/j.issn:0253-4193.2001.04.015
    [21]
    刘浩, 潘伟然. 渤海层化结构及潮汐锋面季节变化的数值研究[J]. 水科学进展, 2007, 18(3): 398−403. doi: 10.3321/j.issn:1001-6791.2007.03.015

    Liu Hao, Pan Weiran. Numerical simulation of the seasonal variations of the stratification and tidal front in the Bohai Sea[J]. Advances in Water Science, 2007, 18(3): 398−403. doi: 10.3321/j.issn:1001-6791.2007.03.015
    [22]
    张广跃, 魏皓, 肖劲根, 等. 2017年辽东湾夏季潮汐锋位置变化的分析[J]. 海洋与湖沼, 2020, 51(1): 1−12. doi: 10.11693/hyhz20190600110

    Zhang Guangyue, Wei Hao, Xiao Jin’gen, et al. Variation of tidal front position in Liaodong Bay during summer 2017[J]. Oceanologia et Limnologia Sinica, 2020, 51(1): 1−12. doi: 10.11693/hyhz20190600110
    [23]
    张竹琦. 渤海、黄海(34°N以北)溶解氧年变化特征及与水温的关系[J]. 海洋通报, 1992, 11(5): 41−45.

    Zhang Zhuqi. Annual variation of dissolved oxygen in Bohai Sea and Yellow Sea (North of 34°) nwith relation to water temperature[J]. Marine Science Bulletin, 1992, 11(5): 41−45.
    [24]
    臧璐, 石晓勇, 张传松, 等. 冬、夏季北黄海生源要素的平面分布特征[J]. 海洋环境科学, 2010, 29(3): 346−350. doi: 10.3969/j.issn.1007-6336.2010.03.013

    Zang Lu, Shi Xiaoyong, Zhang Chuansong, et al. Horizontal distribution of biogenic elements in winter and summer in North Yellow Sea[J]. Marine Environmental Science, 2010, 29(3): 346−350. doi: 10.3969/j.issn.1007-6336.2010.03.013
    [25]
    王丽莎, 张传松, 王颢, 等. 夏季黄渤海生源要素的平面分布特征[J]. 海洋环境科学, 2015, 34(3): 361−366,383.

    Wang Lisha, Zhang Chuansong, Wang Hao, et al. Horizontal distribution features of biogenic elements in Bohai Sea and the Yellow Sea in summer[J]. Marine Environmental Science, 2015, 34(3): 361−366,383.
    [26]
    石强. 渤海夏季溶解氧与表观耗氧量年际变化时空模态[J]. 应用海洋学学报, 2016, 35(2): 243−255. doi: 10.3969/J.ISSN.2095-4972.2016.02.014

    Shi Qiang. Spatio-temporal Mode for inter-annual change of dissolved oxygen and apparent oxygen utilization in summer Bohai Sea[J]. Journal of Applied Oceanography, 2016, 35(2): 243−255. doi: 10.3969/J.ISSN.2095-4972.2016.02.014
    [27]
    石强. 黄海溶解氧含量场季节循环时空模态与机制[J]. 应用海洋学学报, 2016, 35(1): 1−14. doi: 10.3969/J.ISSN.2095-4972.2016.01.001

    Shi Qiang. Mechanism and spatio-temporal mode on the seasonal cycle of dissolved oxygen content fields in the Yellow Sea[J]. Journal of Applied Oceanography, 2016, 35(1): 1−14. doi: 10.3969/J.ISSN.2095-4972.2016.01.001
    [28]
    翟惟东, 赵化德, 郑楠, 等. 2011年夏季渤海西北部、北部近岸海域的底层耗氧与酸化[J]. 科学通报, 2012, 57(9): 753-758.

    Zhou Feng, Zhao Huade, Zheng Nan, et al. Coastal acidification in summer bottom oxygen-depleted waters in northwestern–northern Bohai Sea from June to August in 2011[J]. Chinese Science Bulletin, 2009, 54(23): 4520-4528.
    [29]
    江涛, 徐勇, 刘传霞, 等. 渤海中部海域低氧区的发生记录[J]. 渔业科学进展, 2016, 37(4): 1−6. doi: 10.11758/yykxjz.20150618002

    Jiang Tao, Xu Yong, Liu Chuanxia, et al. Report on the occurrence of hypoxia in the central Bohai Sea[J]. Progress in Fishery Sciences, 2016, 37(4): 1−6. doi: 10.11758/yykxjz.20150618002
    [30]
    张华, 李艳芳, 唐诚, 等. 渤海底层低氧区的空间特征与形成机制[J]. 科学通报, 2016, 61(14): 1612−1620. doi: 10.1360/N972015-00915

    Zhang Hua, Li Yanfang, Tang Cheng, et al. Spatial characteristics and formation mechanisms of bottom hypoxia zone in the Bohai Sea during summer[J]. Chinese Science Bulletin, 2016, 61(14): 1612−1620. doi: 10.1360/N972015-00915
    [31]
    钱思萌. 渤海中部低氧现象的数值模拟研究[D]. 天津: 天津大学, 2018.

    Qian Simeng. Simulation on formation of summer low oxygen zone in the Bohai Sea[D]. Tianjin: Tianjin University, 2018.
    [32]
    Wei Qinsheng, Wang Baodong, Yao Qingzhen, et al. Spatiotemporal variations in the summer hypoxia in the Bohai Sea (China) and controlling mechanisms[J]. Marine Pollution Bulletin, 2019, 138: 125−134. doi: 10.1016/j.marpolbul.2018.11.041
    [33]
    Zhai Weidong, Zhao Huade, Su Jilan, et al. Emergence of summertime hypoxia and concurrent carbonate mineral suppression in the central Bohai Sea, China[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(9): 2768−2785. doi: 10.1029/2019JG005120
    [34]
    Song Guisheng, Zhao Liang, Chai Fei, et al. Summertime oxygen depletion and acidification in Bohai Sea, China[J]. Frontiers in Marine Science, 2020, 7: 252. doi: 10.3389/fmars.2020.00252
    [35]
    Chen Yaozu, Zhai Fangguo, Gu Yanzhen, et al. Seasonal variability in dissolved oxygen in the Bohai Sea, China[J]. Journal of Oceanology and Limnology, 2022, 40(1): 78−92. doi: 10.1007/s00343-021-0235-6
    [36]
    王丽芳, 翟惟东, 黄晓, 等. 渤、黄海在低氧形成期与消亡期生源要素的分布差异及响应特征[J]. 海洋环境科学, 2022, 41(3): 452−460,466. doi: 10.12111/j.mes.20210080

    Wang Lifang, Zhai Weidong, Huang Xiao, et al. Dynamics of biogenic elements before and after oxygen depletion in Yellow and Bohai Seas[J]. Marine Environmental Science, 2022, 41(3): 452−460,466. doi: 10.12111/j.mes.20210080
    [37]
    曹婧, 王颖, 刘欣禹, 等. 2020年夏季渤海中部底层水体低氧现象成因分析[J]. 海洋环境科学, 2023, 42(2): 254−261. doi: 10.12111/j.mes.2022-x-0188

    Cao Jing, Wang Ying, Liu Xinyu, et al. Analysis on the causes of hypoxia in the bottom of the central Bohai Sea in summer 2020[J]. Marine Environmental Science, 2023, 42(2): 254−261. doi: 10.12111/j.mes.2022-x-0188
    [38]
    Zhao Huade, Kao S J, Zhai Weidong, et al. Effects of stratification, organic matter remineralization and bathymetry on summertime oxygen distribution in the Bohai Sea, China[J]. Continental Shelf Research, 2017, 134: 15−25. doi: 10.1016/j.csr.2016.12.004
    [39]
    Wang Hanzheng, Zhang Haiyan, Wei Hao, et al. Temporal variations of the two oxygen depleted zones in the Bohai Sea[J]. Frontiers in Marine Science, 2023, 10: 1247579. doi: 10.3389/fmars.2023.1247579
    [40]
    李志成, 魏皓, 张海彦, 等. 渤海夏季底层氧亏损分布的年际差异分析[J]. 海洋与湖沼, 2021, 52(3): 601−613. doi: 10.11693/hyhz20200800227

    Li Zhicheng, Wei Hao, Zhang Haiyan, et al. The interannual difference in summer bottom oxygen deficiency in Bohai Sea[J]. Oceanologia et Limnologia Sinica, 2021, 52(3): 601−613. doi: 10.11693/hyhz20200800227
    [41]
    孟春霞, 邓春梅, 姚鹏, 等. 小清河口及邻近海域的溶解氧[J]. 海洋环境科学, 2005, 24(3): 25−28. doi: 10.3969/j.issn.1007-6336.2005.03.007

    Meng Chunxia, Deng Chunmei, Yao Peng, et al. Dissolved oxygen in the Xiaoqinghe estuary and adjacent waters[J]. Marine Environmental Science, 2005, 24(3): 25−28. doi: 10.3969/j.issn.1007-6336.2005.03.007
    [42]
    熊代群, 杜晓明, 唐文浩, 等. 海河天津段与河口海域水体氮素分布特征及其与溶解氧的关系[J]. 环境科学研究, 2005, 18(3): 1−4,19. doi: 10.3321/j.issn:1001-6929.2005.03.001

    Xiong Daiqun, Du Xiaoming, Tang Wenhao, et al. Nitrogen distribution in the water of the Haihe River mainstream and estuary seawater and its relationship with water dissolved oxygen levels[J]. Research of Environmental Sciences, 2005, 18(3): 1−4,19. doi: 10.3321/j.issn:1001-6929.2005.03.001
    [43]
    Zhang Guodong, Wen Yujian, Ding Changling, et al. Hypoxia in the Bohai Bay, China: distributions, causes and mechanisms[J]. Frontiers in Marine Science, 2023, 10: 1199340. doi: 10.3389/fmars.2023.1199340
    [44]
    杨丽娜, 李正炎, 张学庆. 大辽河近入海河段水体溶解氧分布特征及低氧成因的初步分析[J]. 环境科学, 2011, 32(1): 51−57.

    Yang Lina, Li Zhengyan, Zhang Xueqing. Distribution characteristics of dissolved oxygen and mechanism of hypoxia in the upper estuarine zone of the Daliaohe River[J]. Environmental Science, 2011, 32(1): 51−57.
    [45]
    赵紫涵, 宋贵生, 赵亮. 秦皇岛外海夏季溶解氧与pH的变化特征分析[J]. 海洋学报, 2020, 42(10): 144−154.

    Zhao Zihan, Song Guisheng, Zhao Liang. Characteristics of dissolved oxygen and pH variations in summer off the Qinhuangdao[J]. Haiyang Xuebao, 2020, 42(10): 144−154.
    [46]
    Chen Zhuoyun, Zhai Weidong, Yang Shu, et al. Exploring origin of oxygen-consuming organic matter in a newly developed quasi-hypoxic coastal ocean, the Bohai Sea (China): a stable carbon isotope perspective[J]. Science of the Total Environment, 2022, 837: 155847. doi: 10.1016/j.scitotenv.2022.155847
    [47]
    李兆钦, 李欣, 孙利元, 等. 刘公岛海洋牧场底层海水溶解氧浓度的变化特征[J]. 海洋与湖沼, 2019, 50(1): 86−99. doi: 10.11693/hyhz20180300062

    Li Zhaoqin, Li Xin, Sun Liyuan, et al. Analysis of the temporal variations of dissolved oxygen concentration in seawater in the bottom of the Liugong Island marine pasture[J]. Oceanologia et Limnologia Sinica, 2019, 50(1): 86−99. doi: 10.11693/hyhz20180300062
    [48]
    孙利元, 刘子洲, 丁金强, 等. 夏季烟台-威海北部近海溶解氧浓度垂向分布的最小值[J]. 海洋科学, 2021, 45(11): 20−29.

    Sun Liyuan, Liu Zizhou, Ding Jinqiang, et al. Minima in vertical distributions of dissolved oxygen concentration in the northern coastal oceans of Yantai-Weihai[J]. Marine Sciences, 2021, 45(11): 20−29.
    [49]
    Zhai Fangguo, Liu Zizhou, Li Peiliang, et al. Physical controls of summer variations in bottom layer oxygen concentrations in the coastal hypoxic region off the northeastern Shandong Peninsula in the Yellow Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(5): e2021JC017299. doi: 10.1029/2021JC017299
    [50]
    樊思琦, 刘子洲, 翟方国, 等. 烟台-威海北部海洋牧场底层溶解氧浓度的季节变化研究[J]. 海洋与湖沼, 2023, 54(4): 1000−1014. doi: 10.11693/hyhz20221200317

    Fan Siqi, Liu Zizhou, Zhai Fangguo, et al. Seasonal variation of dissolved oxygen concentration in bottom water of marine ranches north of Yantai-Weihai[J]. Oceanologia et Limnologia Sinica, 2023, 54(4): 1000−1014. doi: 10.11693/hyhz20221200317
    [51]
    Zhai W D, Zheng N, Huo Cheng, et al. Subsurface pH and carbonate saturation state of aragonite on the Chinese side of the North Yellow Sea: seasonal variations and controls[J]. Biogeosciences, 2014, 11(4): 1103−1123. doi: 10.5194/bg-11-1103-2014
    [52]
    Zhai Weidong, Zang Kunpeng, Huo Cheng, et al. Occurrence of aragonite corrosive water in the North Yellow Sea, near the Yalu River estuary, during a summer flood[J]. Estuarine, Coastal and Shelf Science, 2015, 166: 199−208. doi: 10.1016/j.ecss.2015.02.010
    [53]
    Zhai Weidong. Exploring seasonal acidification in the Yellow Sea[J]. Science China Earth Sciences, 2018, 61(6): 647−658. doi: 10.1007/s11430-017-9151-4
    [54]
    Li Chenglong, Zhai Weidong. Decomposing monthly declines in subsurface-water pH and aragonite saturation state from spring to autumn in the North Yellow Sea[J]. Continental Shelf Research, 2019, 185: 37−50. doi: 10.1016/j.csr.2018.11.003
    [55]
    Xiong Tianqi, Wei Qinsheng, Zhai Weidong, et al. Comparing subsurface seasonal deoxygenation and acidification in the Yellow Sea and northern East China Sea along the north-to-south latitude gradient[J]. Frontiers in Marine Science, 2020, 7: 686. doi: 10.3389/fmars.2020.00686
    [56]
    俎婷婷, 鲍献文, 谢骏, 等. 渤海中部断面环境要素分布及其变化趋势[J]. 中国海洋大学学报, 2005, 35(6): 889−894,1016.

    Zu Tingting, Bao Xianwen, Xie Jun, et al. Distribution and variation trends of the environmental factors in the central section of the Bohai Sea[J]. Periodical of Ocean University of China, 2005, 35(6): 889−894,1016.
    [57]
    李伯志, 赵亮, 魏诗晏. 渤海和北黄海溶解氧与营养盐年际变化特征[J]. 天津科技大学学报, 2019, 34(4): 45−55.

    Li Bozhi, Zhao Liang, Wei Shiyan. Inter-annual variations of dissolved oxygen and nutrients in the Bohai Sea and the North Yellow Sea[J]. Journal of Tianjin University of Science & Technology, 2019, 34(4): 45−55.
    [58]
    刘千, 孙群. 渤海中部溶解氧浓度年际变化特征分析[J]. 天津科技大学学报, 2022, 37(5): 15−23.

    Liu Qian, Sun Qun. Interannual variations of dissolved oxygen concentration in the central Bohai Sea[J]. Journal of Tianjin University of Science & Technology, 2022, 37(5): 15−23.
    [59]
    Wei Qinsheng, Yao Qingzhen, Wang Baodong, et al. Deoxygenation and its controls in a semienclosed shelf ecosystem, northern Yellow Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 9004−9019. doi: 10.1029/2019JC015399
    [60]
    Wei Hao, Zhao Liang, Zhang Haiyan, et al. Summer hypoxia in Bohai Sea caused by changes in phytoplankton community[J]. Anthropocene Coasts, 2021, 4(1): 77−86. doi: 10.1139/anc-2020-0017
    [61]
    Liang Wen, Wang Yan, Mu Jinglong, et al. Nutrient changes in the Bohai Sea over the past two decades[J]. Science of the Total Environment, 2023, 903: 166696. doi: 10.1016/j.scitotenv.2023.166696
    [62]
    Xiao Rushui, Zhao Zihan, Guo Junting, et al. Variations of dissolved inorganic nutrients and their influences on harmful algal blooms in Bohai Sea over the past thirteen years[J]. Estuarine, Coastal and Shelf Science, 2023, 287: 108335. doi: 10.1016/j.ecss.2023.108335
    [63]
    Zheng Liwen, Zhai Weidong. Nutrient dynamics in the Bohai and North Yellow seas from seasonal to decadal scales: unveiling Bohai Sea eutrophication mitigation in the 2010s[J]. Science of the Total Environment, 2023, 905: 167417. doi: 10.1016/j.scitotenv.2023.167417
    [64]
    Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis[M]. 3rd ed. John Wiley & Sons, 2009. (查阅网上资料, 未找到对应的出版地信息, 请确认)
    [65]
    Wong G T F. Removal of nitrite interference in the Winkler determination of dissolved oxygen in seawater[J]. Marine Chemistry, 2012, 130-131: 28−32. doi: 10.1016/j.marchem.2011.11.003
    [66]
    Garcia H E, Gordon L I. Oxygen solubility in seawater: better fitting equations[J]. Limnology and Oceanography, 1992, 37(6): 1307−1312. doi: 10.4319/lo.1992.37.6.1307
    [67]
    Yu Xiaojie, Guo Xinyu, Gao Huiwang. Detachment of low‐salinity water from the Yellow River plume in summer[J]. Journal of Geophysical Research: Oceans, 2020, 125(10): e2020JC016344. doi: 10.1029/2020JC016344
    [68]
    Cheng Xinyue, Zhu Jianrong, Chen Shenliang. Dynamics of the extension of the Yellow River plume in the Bohai Sea[J]. Continental Shelf Research, 2021, 222: 104438. doi: 10.1016/j.csr.2021.104438
    [69]
    汤毓祥, 邹娥梅, Lie H J. 冬至初春黄海暖流的路径和起源[J]. 海洋学报, 2001, 23(1): 1−12. doi: 10.3321/j.issn:0253-4193.2001.01.001

    Tang Yuxiang, Zou Emei, Lie H J. On the origin and path of the Huanghai warm current during winter and early spring[J]. Haiyang Xuebao, 2001, 23(1): 1−12. doi: 10.3321/j.issn:0253-4193.2001.01.001
    [70]
    Lin Xiaopei, Xie Shangping, Chen Xinping, et al. A well‐mixed warm water column in the central Bohai Sea in summer: effects of tidal and surface wave mixing[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11): C11017.
    [71]
    Hagy J D, Boynton W R, Keefe C W, et al. Hypoxia in Chesapeake Bay, 1950-2001: long-term change in relation to nutrient loading and river flow[J]. Estuaries, 2004, 27(4): 634−658. doi: 10.1007/BF02907650
    [72]
    Conley D J, Humborg C, Rahm L, et al. Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry[J]. Environmental Science & Technology, 2002, 36(24): 5315−5320.
    [73]
    Neretin L N, Volkov I I, Böttcher M E, et al. A sulfur budget for the Black Sea anoxic zone[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(12): 2569−2593. doi: 10.1016/S0967-0637(01)00030-9
    [74]
    Wang Baodong. Hydromorphological mechanisms leading to hypoxia off the Changjiang estuary[J]. Marine Environmental Research, 2009, 67(1): 53−58. doi: 10.1016/j.marenvres.2008.11.001
    [75]
    韦钦胜, 王保栋, 于志刚, 等. 夏季长江口外缺氧频发的机制及酸化问题初探[J]. 中国科学: 地球科学, 2017, 47(1): 114−134.

    Wei Qinsheng, Wang Baodong, Yu Zhigang, et al. Mechanisms leading to the frequent occurrences of hypoxia and a preliminary analysis of the associated acidification off the Changjiang estuary in summer[J]. Science China Earth Sciences, 2017, 60(2): 360−381.
    [76]
    韦钦胜, 葛人峰, 王保栋, 等. 南黄海冷水域西部溶解氧垂直分布最大值现象的成因分析[J]. 海洋学报, 2009, 31(4): 69−77. doi: 10.3321/j.issn:0253-4193.2009.04.008

    Wei Qinsheng, Ge Renfeng, Wang Baodong, et al. Formation analysis of maximum value in vertical distribution of dissolved oxygen in the Cold Water Mass of the western Southern Huanghai Sea[J]. Haiyang Xuebao, 2009, 31(4): 69−77. doi: 10.3321/j.issn:0253-4193.2009.04.008
    [77]
    Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of sea-water[J]. The Sea, 1963, 2: 26−77. (查阅网上资料, 请核对文献类型及格式)
    [78]
    Ward B B. How nitrogen is lost[J]. Science, 2013, 341(6144): 352−353. doi: 10.1126/science.1240314
    [79]
    Babbin A R, Keil R G, Devol A H, et al. Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean[J]. Science, 2014, 344(6182): 406−408. doi: 10.1126/science.1248364
    [80]
    Qiao Shuqing, Shi Xuefa, Wang Guoqing, et al. Sediment accumulation and budget in the Bohai sea, Yellow Sea and East China sea[J]. Marine Geology, 2017, 390: 270−281. doi: 10.1016/j.margeo.2017.06.004
    [81]
    Zhao B, Yao P, Bianchi T S, et al. Controls on organic carbon burial in the Eastern China marginal seas: a regional synthesis[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006608. doi: 10.1029/2020GB006608
    [82]
    林凤翱, 卢兴旺, 洛昊, 等. 渤海赤潮的历史、现状及其特点[J]. 海洋环境科学, 2008, 27(S2): 1−5. doi: 10.3969/j.issn.1007-6336.2008.z2.001

    Lin Feng’ao, Lu Xingwang, Luo Hao, et al. History, status and characteristics of red tide in Bohai Sea[J]. Marine Environmental Science, 2008, 27(S2): 1−5. doi: 10.3969/j.issn.1007-6336.2008.z2.001
    [83]
    姜德娟, 张华. 渤海叶绿素浓度时空特征分析及其对赤潮的监测[J]. 海洋科学, 2018, 42(5): 23−31. doi: 10.11759/hykx20171215001

    Jiang Dejuan, Zhang Hua. Analysis of spatial and temporal characteristics of chlorophyll-a concentration and red tide monitoring in Bohai Sea[J]. Marine Sciences, 2018, 42(5): 23−31. doi: 10.11759/hykx20171215001
    [84]
    Liu Dongyan, Li Xin, Emeis K C, et al. Distribution and sources of organic matter in surface sediments of Bohai Sea near the Yellow River Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2015, 165: 128−136. doi: 10.1016/j.ecss.2015.09.007
    [85]
    高立蒙, 姚鹏, 王金鹏, 等. 渤海表层沉积物中有机碳的分布和来源[J]. 海洋学报, 2016, 38(6): 8−20. doi: 10.3969/j.issn.0253-4193.2016.06.002

    Gao Limeng, Yao Peng, Wang Jinpeng, et al. Distribution and sources of organic carbon in surface sediments from the Bohai Sea[J]. Haiyang Xuebao, 2016, 38(6): 8−20. doi: 10.3969/j.issn.0253-4193.2016.06.002
    [86]
    韦钦胜, 傅明珠, 李艳, 等. 南黄海冷水团海域溶解氧和叶绿素最大现象值及营养盐累积的季节演变[J]. 海洋学报, 2013, 35(4): 142−154. doi: 10.3969/j.issn.0253-4193.2013.04.017

    Wei Qinsheng, Fu Mingzhu, Li Yan, et al. Observation of the seasonal evolution of DO, chlorophyll a maximum phenomena and nutrient accumulating in the southern Huanghai (Yellow) Sea Cold Water Mass area[J]. Haiyang Xuebao, 2013, 35(4): 142−154. doi: 10.3969/j.issn.0253-4193.2013.04.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (22) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return