Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Jiang Leilei,Huang Dahua,Zhao Bailing, et al. Research progress on coral skeleton fluorescence as an indicator of environmental changes[J]. Haiyang Xuebao,2025, 47(x):1–12
Citation: Jiang Leilei,Huang Dahua,Zhao Bailing, et al. Research progress on coral skeleton fluorescence as an indicator of environmental changes[J]. Haiyang Xuebao,2025, 47(x):1–12

Research progress on coral skeleton fluorescence as an indicator of environmental changes

  • Received Date: 2025-06-23
  • Rev Recd Date: 2025-08-20
  • Available Online: 2025-09-05
  • Massive Porites corals, widely inhabiting in tropical oceans, are considered ideal archives for high-resolution environmental records and have garnered significant attention in the fields of paleoclimate and paleoenvironmental reconstruction. The fluorescence emitted by coral skeletons under long-wave ultraviolet (UV) light, due to its sensitivity to terrestrial runoff, pollutants, and climatic events, has emerged as an another tool for revealing various environmental changes related to rainfall, river discharge, and other factors. This review synthesizes the formation mechanisms of fluorescent substances in coral skeletons, measurement techniques, applications in environmental reconstruction, as well as current challenges and future research directions. Overall, the fluorescent signals in coral skeletons primarily originate from terrestrially derived organic matter dominated by fulvic acids and humic-like substances produced by symbiotic algal metabolism. Additionally, coral skeletal structure, mineral properties, and interactions with environmental factors such as rainfall and runoff influence fluorescence characteristics. By combining high-precision micro-sampling techniques with fluorescence analysis, scientists have successfully reconstructed environmental histories of terrestrial runoff, precipitation, and human activities across different timescales. Based on current international research progress, this paper suggests that future studies should explore novel analytical techniques, develop more accurate fluorescence-hydrological quantitative models by integrating multi-source data, and strengthen cross-validation with other proxy indicators to establish a high-precision, high-resolution global coral fluorescence database.
  • loading
  • [1]
    Yu Kefu. Coral reefs in the South China Sea: their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012, 55(8): 1217−1229. doi: 10.1007/s11430-012-4449-5
    [2]
    余克服. 珊瑚礁科学概论[M]. 北京: 科学出版社, 2018.

    Yu Kefu. Introduction to the Science of Coral Reefs[M]. Beijing: Science Press, 2018.
    [3]
    陶士臣, 张会领, 余克服, 等. 近500年西沙群岛海面温度年际变化的珊瑚记录及其环境意义[J]. 第四纪研究, 2021, 41(2): 411−423. doi: 10.11928/j.issn.1001-7410.2021.02.10

    Tao Shichen, Zhang Huiling, Yu Kefu, et al. Annual resolution sea surface temperature reconstructed quantitatively by Porites coral growth rate in the Xishaqundao Islands during the past five centuries and their environmental significance[J]. Quaternary Sciences, 2021, 41(2): 411−423. doi: 10.11928/j.issn.1001-7410.2021.02.10
    [4]
    Jiang Leilei, Yu Kefu, Tao Shichen, et al. ENSO variability during the Medieval Climate Anomaly as recorded by Porites corals from the northern South China Sea[J]. Paleoceanography and Paleoclimatology, 2021, 36(4): e2020PA004173. doi: 10.1029/2020PA004173
    [5]
    Felis T, Suzuki A, Kuhnert H, et al. Subtropical coral reveals abrupt early-twentieth-century freshening in the western North Pacific Ocean[J]. Geology, 2009, 37(6): 527−530. doi: 10.1130/G25581A.1
    [6]
    Chen Xuefei, D'Olivo J P, Wei Gangjian, et al. Anthropogenic ocean warming and acidification recorded by Sr/Ca, Li/Mg, δ11B and B/Ca in Porites coral from the Kimberley region of northwestern Australia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 528: 50−59. doi: 10.1016/j.palaeo.2019.04.033
    [7]
    Tanzil J T I, Goodkin N F, Sin T M, et al. Multi-colony coral skeletal Ba/Ca from Singapore’s turbid urban reefs: relationship with contemporaneous in-situ seawater parameters[J]. Geochimica et Cosmochimica Acta, 2019, 250: 191−208. doi: 10.1016/j.gca.2019.01.034
    [8]
    Sun Yinan, Jiang Wei, Yu Kefu, et al. High‐resolution coral records of Cadmium in surface seawater: biogeochemical cycling and a novel proxy for winter monsoon[J]. Geochemistry, Geophysics, Geosystems, 2022, 23(11): e2022GC010600. doi: 10.1029/2022GC010600
    [9]
    Jiang Wei, Yu Kefu, Song Yinxian, et al. Annual REE signal of East Asian Winter monsoon in surface seawater in the northern South China Sea: evidence from a century‐long Porites coral record[J]. Paleoceanography and Paleoclimatology, 2018, 33(2): 168−178. doi: 10.1002/2017PA003267
    [10]
    Jiang Leilei, Yu Kefu, Tao Shichen, et al. Modulation of East Asian monsoon strength by ENSO during the warm periods of the late Holocene: evidence from Porites corals in the northern South China Sea[J]. Global and Planetary Change, 2023, 225: 104136. doi: 10.1016/j.gloplacha.2023.104136
    [11]
    Han Tao, Yu Kefu, Yan Hongqiang, et al. Links between the coral δ13C record of primary productivity variations in the northern South China Sea and the East Asian Winter monsoon[J]. Geophysical Research Letters, 2019, 46(24): 14586−14594. doi: 10.1029/2019GL085030
    [12]
    Li Xiaohua, Wang Xiaowei, Liu Chuanyu, et al. Traces of the 1997 Indonesian wildfires in the marine environment from a network of coral δ13C records[J]. Geophysical Research Letters, 2020, 47(22): e2020GL090383. doi: 10.1029/2020GL090383
    [13]
    Chen Xuefei, Deng Wenfeng, Kang Huiling, et al. A replication study on coral δ11B and B/Ca and their variation in modern and fossil Porites: implications for coral calcifying fluid chemistry and seawater pH changes over the last millennium[J]. Paleoceanography and Paleoclimatology, 2021, 36(10): e2021PA004319. doi: 10.1029/2021PA004319
    [14]
    Cole J E, Fairbanks R G, Shen G T. Recent variability in the southern oscillation: isotopic results from a Tarawa Atoll coral[J]. Science, 1993, 260(5115): 1790−1793. doi: 10.1126/science.260.5115.1790
    [15]
    Felis T, Pätzold J. Corals as climate archive[M]//Fischer H, Kumke T, Lohmann G, et al. The Climate in Historical Times. Berlin, Heidelberg: Springer, 2004: 91−108.
    [16]
    Isdale P. Fluorescent bands in massive corals record centuries of coastal rainfall[J]. Nature, 1984, 310(5978): 578−579. doi: 10.1038/310578a0
    [17]
    Wild F J, Jones A C, Tudhope A W. Investigation of luminescent banding in solid coral: the contribution of phosphorescence[J]. Coral Reefs, 2000, 19(2): 132−140. doi: 10.1007/s003380000084
    [18]
    Lough J M, Barnes D J. Intra-annual timing of density band formation of Porites coral from the central Great Barrier Reef[J]. Journal of Experimental Marine Biology and Ecology, 1990, 135(1): 35−57. doi: 10.1016/0022-0981(90)90197-K
    [19]
    Leonard N D, Welsh K J, Lough J M, et al. Evidence of reduced mid-Holocene ENSO variance on the Great Barrier Reef, Australia[J]. Paleoceanography, 2016, 31(9): 1248−1260. doi: 10.1002/2016PA002967
    [20]
    Lough J M, Llewellyn L E, Lewis S E, et al. Evidence for suppressed mid-Holocene northeastern Australian monsoon variability from coral luminescence[J]. Paleoceanography, 2014, 29(6): 581−594. doi: 10.1002/2014PA002630
    [21]
    Klein R, Loya Y, Gvirtzman G, et al. Seasonal rainfall in the Sinai Desert during the late Quaternary inferred from fluorescent bands in fossil corals[J]. Nature, 1990, 345(6271): 145−147. doi: 10.1038/345145a0
    [22]
    Grove C A, Nagtegaal R, Zinke J, et al. River runoff reconstructions from novel spectral luminescence scanning of massive coral skeletons[J]. Coral Reefs, 2010, 29(3): 579−591. doi: 10.1007/s00338-010-0629-y
    [23]
    Grove C A, Zinke J, Scheufen T, et al. Spatial linkages between coral proxies of terrestrial runoff across a large embayment in Madagascar[J]. Biogeosciences, 2012, 9(8): 3063−3081. doi: 10.5194/bg-9-3063-2012
    [24]
    Matthews B J H, Jones A C, Theodorou N K, et al. Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs[J]. Marine Chemistry, 1996, 55(3/4): 317−332.
    [25]
    Barnes D J, Taylor R B. On the nature and causes of luminescent lines and bands in coral skeletons[J]. Coral Reefs, 2001, 19(3): 221−230. doi: 10.1007/PL00006958
    [26]
    Lough J M. Climate records from corals[J]. WIREs Climate Change, 2010, 1(3): 318−331. doi: 10.1002/wcc.39
    [27]
    Sharma A, Anthal R. Humic substances in aquatic ecosystems: a review[J]. International Journal of Innovative Research in Science, Engineering and Technology, 2016, 5(10): 18462−18470.
    [28]
    Nagao S, Matsunaga T, Suzuki Y, et al. Characteristics of humic substances in the Kuji River waters as determined by high-performance size exclusion chromatography with fluorescence detection[J]. Water Research, 2003, 37(17): 4159−4170. doi: 10.1016/S0043-1354(03)00377-4
    [29]
    Wagner M, Schmidt W, Imhof L, et al. Characterization and quantification of humic substances 2D-Fluorescence by usage of extended size exclusion chromatography[J]. Water Research, 2016, 93: 98−109. doi: 10.1016/j.watres.2016.01.050
    [30]
    Boto K, Isdale P. Fluorescent bands in massive corals result from terrestrial fulvic acid inputs to nearshore zone[J]. Nature, 1985, 315(6018): 396−397. doi: 10.1038/315396a0
    [31]
    Susic M, Boto K, Isdale P. Fluorescent humic acid bands in coral skeletons originate from terrestrial runoff[J]. Marine Chemistry, 1991, 33(1/2): 91−104.
    [32]
    Kaushal N, Yang Liudongqing, Tanzil J T I, et al. Sub-annual fluorescence measurements of coral skeleton: relationship between skeletal luminescence and terrestrial humic-like substances[J]. Coral Reefs, 2020, 39(5): 1257−1272. doi: 10.1007/s00338-020-01959-x
    [33]
    Tanzil J T I, Lee J N, Brown B E, et al. Luminescence and density banding patterns in massive Porites corals around the Thai-Malay Peninsula, Southeast Asia[J]. Limnology and Oceanography, 2016, 61(6): 2003−2026. doi: 10.1002/lno.10350
    [34]
    彭子成, 谢端, 何学贤, 等. 海南岛滨珊瑚的荧光强度与降雨量和径流量的相关性研究[J]. 自然科学进展, 2001, 11(8): 840−844.

    Peng Zicheng, Xie Rui, He Xuexian, et al. A study on the correlation between fluorescence intensity of coastal corals in Hainan Island and rainfall and runoff[J]. Progress in Natural Science, 2001, 11(8): 840−844. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [35]
    Llewellyn L E, Everingham Y L, Lough J M. Pharmacokinetic modelling of multi-decadal luminescence time series in coral skeletons[J]. Geochimica et Cosmochimica Acta, 2012, 83: 263−271. doi: 10.1016/j.gca.2011.12.028
    [36]
    Fang L S, Chou Y C. Concentration of fulvic acid in the growth bands of hermatypic corals in relation to local precipitation[J]. Coral Reefs, 1992, 11(4): 187−191. doi: 10.1007/BF00301991
    [37]
    Lough J, Barnes D, McAllister F. Luminescent lines in corals from the Great Barrier Reef provide spatial and temporal records of reefs affected by land runoff[J]. Coral Reefs, 2002, 21(4): 333−343. doi: 10.1007/s00338-002-0253-6
    [38]
    Jones P D, Briffa K R, Osborn T J, et al. High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects[J]. The Holocene, 2009, 19(1): 3−49. doi: 10.1177/0959683608098952
    [39]
    Tudhope A W, Lea D W, Shimmield G B, et al. Monsoon climate and Arabian Sea coastal upwelling recorded in massive corals from southern Oman[J]. Palaios, 1996, 11(4): 347−361. doi: 10.2307/3515245
    [40]
    Scoffin T P, Tudhope A W, Brown B E. Fluorescent and skeletal density banding in Porites lutea from Papua New Guinea and Indonesia[J]. Coral Reefs, 1989, 7(4): 169−178. doi: 10.1007/BF00301595
    [41]
    Smithers S G, Woodroffe C D. Coral microatolls and 20th century sea level in the eastern Indian Ocean[J]. Earth and Planetary Science Letters, 2001, 191(1/2): 173−184.
    [42]
    Willey J D. The effect of seawater magnesium on natural fluorescence during estuarine mixing, and implications for tracer applications[J]. Marine Chemistry, 1984, 15(1): 19−45. doi: 10.1016/0304-4203(84)90036-7
    [43]
    Milne P J, Swart P K. Fiber-optic-based sensing of banded luminescence in corals[J]. Applied Spectroscopy, 1994, 48(10): 1282−1284. doi: 10.1366/0003702944027453
    [44]
    Carricart-Ganivet J P, Lough J M, Barnes D J. Growth and luminescence characteristics in skeletons of massive Porites from a depth gradient in the central Great Barrier Reef[J]. Journal of Experimental Marine Biology and Ecology, 2007, 351(1/2): 27−36.
    [45]
    MacRae C M, Wilson N C. Luminescence database I-Minerals and materials[J]. Microscopy and Microanalysis, 2008, 14(2): 184−204. doi: 10.1017/S143192760808029X
    [46]
    Prouty N G, Storlazzi C D, McCutcheon A L, et al. Historic impact of watershed change and sedimentation to reefs along west-central Guam[J]. Coral Reefs, 2014, 33(3): 733−749. doi: 10.1007/s00338-014-1166-x
    [47]
    Barnes D J, Taylor R B. On the nature and causes of luminescent lines and bands in coral skeletons: II. Contribution of skeletal crystals[J]. Journal of Experimental Marine Biology and Ecology, 2005, 322(2): 135−142. doi: 10.1016/j.jembe.2005.02.008
    [48]
    Ramseyer K, Miano T M, D’Orazio V, et al. Nature and origin of organic matter in carbonates from speleothems, marine cements and coral skeletons[J]. Organic Geochemistry, 1997, 26(5/6): 361−378.
    [49]
    Hendy E J, Gagan M K, Lough J M. Chronological control of coral records using luminescent lines and evidence for non-stationary ENSO teleconnections in northeast Australia[J]. The Holocene, 2003, 13(2): 187−199. doi: 10.1191/0959683603hl606rp
    [50]
    Lough J M. Great Barrier Reef coral luminescence reveals rainfall variability over northeastern Australia since the 17th century[J]. Paleoceanography, 2011, 26(2): PA2201.
    [51]
    Rodriguez-Ramirez A, Grove C A, Zinke J, et al. Coral luminescence identifies the Pacific Decadal Oscillation as a primary driver of river runoff variability impacting the southern Great Barrier Reef[J]. PLoS One, 2014, 9(1): e84305. doi: 10.1371/journal.pone.0084305
    [52]
    李淑, 余克服, 施祺, 等. 南海北部珊瑚共生虫黄藻密度的种间与空间差异及其对珊瑚礁白化的影响[J]. 科学通报, 2007, 52(22): 2655−2662.

    Li Shu, Yu Kefu, Shi Qi, et al. Interspecies and spatial diversity in the symbiotic zooxanthellae density in corals from northern South China Sea and its relationship to coral reef bleaching[J]. Chinese Science Bulletin, 2008, 53(2): 295−303.
    [53]
    Smith III T J, Hudson H J, Robblee M B, et al. Freshwater flow from the Everglades to Florida Bay: a historical reconstruction based on fluorescent banding in the coral Solenastrea bournoni[J]. Bulletin of Marine Science, 1989, 44(1): 274−282.
    [54]
    Nyberg J. Luminescence intensity in coral skeletons from Mona Island in the Caribbean Sea and its Link to precipitation and wind speed[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 360(1793): 749−766. doi: 10.1098/rsta.2001.0963
    [55]
    Peng Zicheng, He Xuexian, Zhang Zhaofeng, et al. Correlation of coral fluorescence with nearshore rainfall and runoff in Hainan Island, South China Sea[J]. Progress in Natural Science, 2002, 12(1): 41−44.
    [56]
    Susic M, Boto K G. High-performance liquid chromatographic determination of humic acid in environmental samples at the nanogram level using fluorescence detection[J]. Journal of Chromatography A, 1989, 482(1): 175−187. doi: 10.1016/S0021-9673(01)93218-2
    [57]
    Barnes D J, Taylor R B, Lough J M. Measurement of luminescence in coral skeletons[J]. Journal of Experimental Marine Biology and Ecology, 2003, 295(1): 91−106. doi: 10.1016/S0022-0981(03)00274-0
    [58]
    Lough J M. Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia[J]. Paleoceanography, 2007, 22(2): PA2218.
    [59]
    Grove C A, Zinke J, Peeters F, et al. Madagascar corals reveal a multidecadal signature of rainfall and river runoff since 1708[J]. Climate of the Past, 2013, 9(2): 641−656. doi: 10.5194/cp-9-641-2013
    [60]
    Kaushal N, Sanwlani N, Tanzil J T I, et al. Coral skeletal luminescence records changes in terrestrial chromophoric dissolved organic matter in tropical coastal waters[J]. Geophysical Research Letters, 2021, 48(8): e2020GL092130. doi: 10.1029/2020GL092130
    [61]
    Kaushal N, Tanzil J T I, Zhou Yongli, et al. Environmental calibration of coral luminescence as a proxy for terrigenous dissolved organic carbon concentration in tropical coastal oceans[J]. Geochemistry, Geophysics, Geosystems, 2022, 23(10): e2022GC010529. doi: 10.1029/2022GC010529
    [62]
    Coble P G. Marine bacteria as a source of dissolved fluorescence in the ocean[D]. Cambridge: Massachusetts Institute of Technology, 1989.
    [63]
    Sinclair D J, McCulloch M T. Corals record low mobile barium concentrations in the Burdekin River during the 1974 flood: evidence for limited Ba supply to rivers?[J] Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 214(1/2): 155−174.
    [64]
    Jupiter S, Roff G, Marion G, et al. Linkages between coral assemblages and coral proxies of terrestrial exposure along a cross-shelf gradient on the southern Great Barrier Reef[J]. Coral Reefs, 2008, 27(4): 887−903. doi: 10.1007/s00338-008-0422-3
    [65]
    贺剑峰, 彭子成, 何学贤, 等. 珊瑚荧光的古降水记录[J]. 海洋地质与第四纪地质, 2001, 21(2): 63−68.

    He Jianfeng, Peng Zicheng, He Xuexian, et al. Paleo-precipitation records of fluorescent bands of coral[J]. Marine Geology & Quaternary Geology, 2001, 21(2): 63−68.
    [66]
    Isdale P, Kotwicki V. Lake Eyre and the Great Barrier Reef: a paleohydrological ENSO (El Nino/ Southern Oscillation) connection[J]. South Australian Geographical Journal, 1987, 87: 44−55.
    [67]
    Kotwicki V, Isdale P. Hydrology of lake Eyre, Australia: El Niño link[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 84(1/4): 87−98.
    [68]
    Isdale P J, Stewart B J, Tickle K S, et al. Palaeohydrological variation in a tropical river catchment: a reconstruction using fluorescent bands in corals of the Great Barrier Reef, Australia[J]. The Holocene, 1998, 8(1): 1−8. doi: 10.1191/095968398670905088
    [69]
    Carr N, Davis C E, Blackbird S, et al. Seasonal and spatial variability in the optical characteristics of DOM in a temperate shelf sea[J]. Progress in Oceanography, 2019, 177: 101929. doi: 10.1016/j.pocean.2018.02.025
    [70]
    D'Olivo J P, McCulloch M. Impact of European settlement and land use changes on Great Barrier Reef river catchments reconstructed from long-term coral Ba/Ca records[J]. Science of the Total Environment, 2022, 830: 154461. doi: 10.1016/j.scitotenv.2022.154461
    [71]
    Nyberg J, Malmgren B A, Winter A, et al. Low Atlantic hurricane activity in the 1970s and 1980s compared to the past 270 years[J]. Nature, 2007, 447(7145): 698−701. doi: 10.1038/nature05895
    [72]
    Reed E V, Cole J E, Lough J M, et al. Linking climate variability and growth in coral skeletal records from the Great Barrier Reef[J]. Coral Reefs, 2019, 38(1): 29−43. doi: 10.1007/s00338-018-01755-8
    [73]
    D’Arrigo R, Baker P, Palmer J, et al. Experimental reconstruction of monsoon drought variability for Australasia using tree rings and corals[J]. Geophysical Research Letters, 2008, 35(12): L12709.
    [74]
    Kayanne H, Iijima H, Nakamura N, et al. Indian Ocean Dipole index recorded in Kenyan coral annual density bands[J]. Geophysical Research Letters, 2006, 33(19): L19709.
    [75]
    Lough J M, Lewis S E, Cantin N E. Freshwater impacts in the central Great Barrier Reef: 1648-2011[J]. Coral Reefs, 2015, 34(3): 739−751. doi: 10.1007/s00338-015-1297-8
    [76]
    Tanzil J T I, Goodkin N F, Sin T M, et al. Multi-colony coral skeletal Ba/Ca from Singapore's turbid urban reefs: relationship with contemporaneous in-situ seawater parameters[J]. Geochimica et Cosmochimica Acta, 2019, 250: 191−208. (查阅网上资料, 本条文献与第7条文献重复, 请确认)
    [77]
    Lewis S E, Lough J M, Cantin N E, et al. A critical evaluation of coral Ba/Ca, Mn/Ca and Y/Ca ratios as indicators of terrestrial input: new data from the Great Barrier Reef, Australia[J]. Geochimica et Cosmochimica Acta, 2018, 237: 131−154. doi: 10.1016/j.gca.2018.06.017
    [78]
    DiSalvo L H. Isolation of bacteria from the corallum of Porites lobata (Vaughn) and its possible significance[J]. American Zoologist, 1969, 9(3): 735−740. doi: 10.1093/icb/9.3.735
    [79]
    Bak R P M, Lanne R W P M. Annual black bands in skeletons of reef corals (Scleractinia)[J]. Marine Ecology Progress Series, 1987, 38: 169−175. doi: 10.3354/meps038169
    [80]
    Nagtegaal R, Grove C A, Kasper S, et al. Spectral luminescence and geochemistry of coral aragonite: effects of whole-core treatment[J]. Chemical Geology, 2012, 318-319: 6-15.
    [81]
    Hudson N, Baker A, Reynolds D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters-a review[J]. River Research and Applications, 2007, 23(6): 631−649. doi: 10.1002/rra.1005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (33) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return