| Citation: | Zhou Jun,Tang Ce,Yan Maojun, et al. High-precision analytical method for triple oxygen isotopes of O2 and application to marine gross primary productivity study[J]. Haiyang Xuebao,2025, 48(x):1–12 |
| [1] |
Cerra M C, Filice M, Caferro A, et al. Cardiac hypoxia tolerance in fish: from functional responses to cell signals[J]. International Journal of Molecular Sciences, 2023, 24(2): 1460. doi: 10.3390/ijms24021460
|
| [2] |
Yorifuji M, Hayashi M, Ono T. Interactive effects of ocean deoxygenation and acidification on a coastal fish Sillago japonica in early life stages[J]. Marine Pollution Bulletin, 2024, 198: 115896. doi: 10.1016/j.marpolbul.2023.115896
|
| [3] |
赵枫燊, 沈延. 低氧对海洋动物影响的研究进展[J]. 水产学杂志, 2024, 37(4): 109−117.
Zhao Fengshen, Shen Yan. A review: research progress on effects of hypoxia on marine animals[J]. Chinese Journal of Fisheries, 2024, 37(4): 109−117.
|
| [4] |
卢勇, 李宏亮, 陈建芳, 等. 长江口及邻近海域表层水体溶解氧饱和度的季节变化和特征[J]. 海洋学研究, 2011, 29(3): 71−77.
Lu Yong, Li Hongliang, Chen Jianfang, et al. Seasonal variations of the surface dissolved oxygen saturation in Changjiang River Estuary and its adjacent waters[J]. Journal of Marine Sciences, 2011, 29(3): 71−77.
|
| [5] |
韦钦胜, 王保栋, 于志刚, 等. 夏季长江口外缺氧频发的机制及酸化问题初探[J]. 中国科学: 地球科学, 2017, 47(1): 114−134.
Wei Qinsheng, Wang Baodong, Yu Zhigang, et al. Mechanisms leading to the frequent occurrences of hypoxia and a preliminary analysis of the associated acidification off the Changjiang estuary in summer[J]. Science China Earth Sciences, 2017, 60(2): 360−381.
|
| [6] |
李瑞帆, 钟晨辉, 郑盛华, 等. 大型海藻碳汇: 固碳机理、评估方法与环境因子影响[J/OL]. 渔业研究: 1−15. https://link.cnki.net/urlid/35.1331.S.20250506.1534.004, 2025-05-07.
Li Ruifan, Zhong Chenhui, Zheng Shenghua, et al. Mechanism, assessment methods and environmental factors influence in carbon sink of macroalgae: a review[J/OL]. Journal of Fisheries Research, 1−15. https://link.cnki.net/urlid/35.1331.S.20250506.1534.004, 2025-05-07.
|
| [7] |
Hauck J, Völker C, Wolf-Gladrow D A, et al. On the Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century[J]. Global Biogeochemical Cycles, 2015, 29(9): 1451−1470. doi: 10.1002/2015GB005140
|
| [8] |
Volk T, Hoffert M I. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[M]//Sundquist E T, Broecker W S. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington: AGU, 1985: 99−110.
|
| [9] |
卢昆, 李汉瑾, Hui Yu, 等. 中国海洋产业蓝碳源汇识别与碳汇发展潜力初探[J]. 中国海洋经济, 2024(2): 188−215.
Lu Kun, Li Hanjin, Hui Yu, et al. Identification of blue carbon sources and sinks in China’s marine industry and the preliminary study on the development potential of carbon sequestration[J]. Marine Economy in China, 2024(2): 188−215.
|
| [10] |
Sigman D M, Hain M P. The biological productivity of the ocean[J]. Nature Education Knowledge, 2012, 3(10): 21.
|
| [11] |
Moore J K, Fu Weiwei, Primeau F, et al. Sustained climate warming drives declining marine biological productivity[J]. Science, 2018, 359(6380): 1139−1143. doi: 10.1126/science.aao6379
|
| [12] |
宋金明. 中国近海生态系统碳循环与生物固碳[J]. 中国水产科学, 2011, 18(3): 703−711.
Song Jinming. Carbon cycling processes and carbon fixed by organisms in China marginal seas[J]. Journal of Fishery Sciences of China, 2011, 18(3): 703−711.
|
| [13] |
焦念志, 戴民汉, 翦知湣, 等. 海洋储碳机制及相关生物地球化学过程研究策略[J]. 科学通报, 2022, 67(15): 1600−1606. doi: 10.1360/TB-2022-0057
Jiao Nianzhi, Dai Minhan, Jian Zhimin, et al. Research strategies for ocean carbon storage mechanisms and effects[J]. Chinese Science Bulletin, 2022, 67(15): 1600−1606. doi: 10.1360/TB-2022-0057
|
| [14] |
黄邦钦, 刘光兴, 史大林, 等. 海洋生态系统储碳过程的多尺度调控及其对全球变化的响应研究进展[J]. 中国基础科学, 2019, 21(3): 17−23.
Huang Bangqin, Liu Guangxing, Shi Dalin, et al. Progress of the MARCO—MARine CarbOn sequestration: multiscale regulation and response to global changes[J]. China Basic Science, 2019, 21(3): 17−23.
|
| [15] |
裴绍峰, Laws E A, 叶思源, 等. 利用14C标记技术测定海洋初级生产力的绉议[J]. 海洋科学, 2014, 38(12): 149−156.
Pei Shaofeng, Laws E A, Ye Siyuan, et al. Study on the discrepancy in applying 14C tracer technique to measure marine primary productivity[J]. Marine Sciences, 2014, 38(12): 149−156.
|
| [16] |
张玉寒, 宋国栋, 张桂玲, 等. 基于18O法利用膜进样质谱仪测定海水初级生产力的方法优化及在长江口的应用[J]. 海洋与湖沼, 2024, 55(5): 1163−1171.
Zhang Yuhan, Song Guodong, Zhang Guiling, et al. Optimization of the 18O method for determining primary productivity of seawater using membrane inlet mass spectrometry and its application in the Changjiang River estuary[J]. Oceanologia et Limnologia Sinica, 2024, 55(5): 1163−1171.
|
| [17] |
Nielsen E S. Measurement of the production of organic matter in the sea by means of carbon-14[J]. Nature, 1951, 167(4252): 684−685.
|
| [18] |
Bender M L. The δ18O of dissolved O2 in seawater: a unique tracer of circulation and respiration in the deep sea[J]. Journal of Geophysical Research: Oceans, 1990, 95(C12): 22243−22252. doi: 10.1029/JC095iC12p22243
|
| [19] |
Blondeau-Patissier D, Gower J F R, Dekker A G, et al. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans[J]. Progress in Oceanography, 2014, 123: 123−144. doi: 10.1016/j.pocean.2013.12.008
|
| [20] |
Nicholson D, Stanley R H R, Doney S C. The triple oxygen isotope tracer of primary productivity in a dynamic ocean model[J]. Global Biogeochemical Cycles, 2014, 28(5): 538−552. doi: 10.1002/2013GB004704
|
| [21] |
Bender M L, Tilbrook B, Cassar N, et al. Ocean productivity south of Australia during spring and summer[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 112: 68−78. doi: 10.1016/j.dsr.2016.02.018
|
| [22] |
叶丰, 贾国东, 韦刚健. 海洋环境中溶解氧稳定氧同位素研究进展[J]. 海洋环境科学, 2014, 33(4): 636−642.
Ye Feng, Jia Guodong, Wei Gangjian. Progress in oxygen isotopic composition of dissolved oxygen in marine systems[J]. Marine Environmental Science, 2014, 33(4): 636−642.
|
| [23] |
Juranek L W, Quay P D, Feely R A, et al. Biological production in the NE Pacific and its influence on air-sea CO2 flux: evidence from dissolved oxygen isotopes and O2/Ar[J]. Journal of Geophysical Research: Oceans, 2012, 117(C5): C05022.
|
| [24] |
Hendricks M B, Bender M L, Barnett B A. Net and gross O2 production in the Southern Ocean from measurements of biological O2 saturation and its triple isotope composition[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(11): 1541−1561. doi: 10.1016/j.dsr.2004.06.006
|
| [25] |
Savarino J, Thiemens M H. Mass-independent oxygen isotope (16O, 17O, 18O) fractionation found in Hx, Ox reactions[J]. The Journal of Physical Chemistry A, 1999, 103(46): 9221−9229. doi: 10.1021/jp991221y
|
| [26] |
Angert A, Rachmilevitch S, Barkan E, et al. Effects of photorespiration, the cytochrome pathway, and the alternative pathway on the triple isotopic composition of atmospheric O2[J]. Global Biogeochemical Cycles, 2003, 17(1): 30.
|
| [27] |
Ash J L, Hu Huanting, Yeung L Y. What fractionates oxygen isotopes during respiration? Insights from multiple isotopologue measurements and theory[J]. ACS Earth and Space Chemistry, 2020, 4(1): 50−66. doi: 10.1021/acsearthspacechem.9b00230
|
| [28] |
Luz B, Barkan E. The isotopic ratios 17O/16O and 18O/16O in molecular oxygen and their significance in biogeochemistry[J]. Geochimica et Cosmochimica Acta, 2005, 69(5): 1099−1110. doi: 10.1016/j.gca.2004.09.001
|
| [29] |
Dole M, Kenks G. Isotopic composition of photosynthetic oxygen[J]. Science, 1944, 100(2601): 409. doi: 10.1126/science.100.2601.409
|
| [30] |
Kroopnick P, Craig H. Atmospheric oxygen: isotopic composition and solubility fractionation[J]. Science, 1972, 175(4017): 54−55. doi: 10.1126/science.175.4017.54
|
| [31] |
Benson B B, Krause Jr D. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere1[J]. Limnology and Oceanography, 1984, 29(3): 620−632. doi: 10.4319/lo.1984.29.3.0620
|
| [32] |
Luz B, Barkan E. Proper estimation of marine gross O2 production with 17O/16O and 18O/16O ratios of dissolved O2[J]. Geophysical Research Letters, 2011, 38(19): L19606.
|
| [33] |
Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society, 1947: 562−581.
|
| [34] |
Quiñones-Rivera Z J, Wissel B, Justić D, et al. Partitioning oxygen sources and sinks in a stratified, eutrophic coastal ecosystem using stable oxygen isotopes[J]. Marine Ecology Progress Series, 2007, 342: 69−83. doi: 10.3354/meps342069
|
| [35] |
Barkan E, Luz B. High precision measurements of 17O/16O and 18O/16O ratios in H2O[J]. Rapid Communications in Mass Spectrometry, 2005, 19(24): 3737−3742. doi: 10.1002/rcm.2250
|
| [36] |
Prokopenko M G, Pauluis O M, Granger J, et al. Exact evaluation of gross photosynthetic production from the oxygen triple-isotope composition of O2: implications for the net-to-gross primary production ratios[J]. Geophysical Research Letters, 2011, 38(14): L14603.
|
| [37] |
Benson B B, Krause Jr D. The concentration and isotopic fractionation of gases dissolved in freshwater in equilibrium with the atmosphere. 1. Oxygen[J]. Limnology and Oceanography, 1980, 25(4): 662−671. doi: 10.4319/lo.1980.25.4.0662
|
| [38] |
Reuer M K, Barnett B A, Bender M L, et al. New estimates of Southern Ocean biological production rates from O2/Ar ratios and the triple isotope composition of O2[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2007, 54(6): 951−974. doi: 10.1016/j.dsr.2007.02.007
|
| [39] |
Quay P D, Emerson S, Wilbur D O, et al. The δ18O of dissolved O2 in the surface waters of the subarctic Pacific: a tracer of biological productivity[J]. Journal of Geophysical Research: Oceans, 1993, 98(C5): 8447−8458. doi: 10.1029/92JC03017
|
| [40] |
Craig H, Weiss R F. Dissolved gas saturation anomalies and excess helium in the ocean[J]. Earth and Planetary Science Letters, 1971, 10(3): 289−296. doi: 10.1016/0012-821X(71)90033-1
|
| [41] |
Craig H, Hayward T. Oxygen supersaturation in the ocean: biological versus physical contributions[J]. Science, 1987, 235(4785): 199−202. doi: 10.1126/science.235.4785.199
|
| [42] |
Spitzer W S, Jenkins W J. Rates of vertical mixing, gas exchange and new production: estimates from seasonal gas cycles in the upper ocean near Bermuda[J]. Journal of Marine Research, 1989, 47(1): 169−196. doi: 10.1357/002224089785076370
|
| [43] |
Luz B, Barkan E, Sagi Y, et al. Evaluation of community respiratory mechanisms with oxygen isotopes: a case study in Lake Kinneret[J]. Limnology and Oceanography, 2002, 47(1): 33−42. doi: 10.4319/lo.2002.47.1.0033
|
| [44] |
Luz B, Barkan E. Net and gross oxygen production from O2/Ar, 17O/16O and 18O/16O ratios[J]. Aquatic Microbial Ecology, 2009, 56: 133−145. doi: 10.3354/ame01296
|
| [45] |
Laws E A. Photosynthetic quotients, new production and net community production in the open ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(1): 143−167. doi: 10.1016/0198-0149(91)90059-O
|
| [46] |
Huang Kuan, Ducklow H, Vernet M, et al. Export production and its regulating factors in the West Antarctica Peninsula region of the Southern Ocean[J]. Global Biogeochemical Cycles, 2012, 26(2): GB2005.
|
| [47] |
Castro-Morales K, Cassar N, Shoosmith D R, et al. Biological production in the Bellingshausen Sea from oxygen-to-argon ratios and oxygen triple isotopes[J]. Biogeosciences, 2013, 10(4): 2273−2291. doi: 10.5194/bg-10-2273-2013
|
| [48] |
王芊芊, 胡焕婷. 海洋溶解氧同位素的测量方法及其在长江口缺氧研究中的应用[J]. 环境化学, 2023, 42(3): 996−1006.
Wang Qianqian, Hu Huanting. Oxygen isotope analysis of marine dissolved oxygen and its application to the Changjiang Estuary hypoxia[J]. Environmental Chemistry, 2023, 42(3): 996−1006.
|
| [49] |
Emerson S, Quay P D, Stump C, et al. Chemical tracers of productivity and respiration in the subtropical Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 1995, 100(C8): 15873−15887. doi: 10.1029/95JC01333
|
| [50] |
Barkan E, Luz B. High-precision measurements of 17O/16O and 18O/16O of O2 and O2/Ar ratio in air[J]. Rapid Communications in Mass Spectrometry, 2003, 17(24): 2809−2814. doi: 10.1002/rcm.1267
|
| [51] |
Blunier T, Barnett B, Bender M L, et al. Biological oxygen productivity during the last 60, 000 years from triple oxygen isotope measurements[J]. Global Biogeochemical Cycles, 2002, 16(3): 3.
|
| [52] |
张桂玲, 韩玉, 郑文静, 等. 基于O2/Ar比值估算海洋混合层群落净生产力的研究进展[J]. 中国海洋大学学报, 2020, 50(3): 1−7.
Zhang Guiling, Han Yu, Zheng Wenjing, et al. Advances in studies of net community production based on oxygen/argon ratio[J]. Periodical of Ocean University of China, 2020, 50(3): 1−7.
|
| [53] |
Sarma V V S S, Abe O, Saino T. Spatial variations in time-integrated plankton metabolic rates in Sagami Bay using triple oxygen isotopes and O2: Ar ratios[J]. Limnology and Oceanography, 2008, 53(5): 1776−1783. doi: 10.4319/lo.2008.53.5.1776
|
| [54] |
Yang J W, Brandon M, Landais A, et al. Triple isotopic composition of atmospheric oxygen (Δ17O of O2) over 58.0-150.0, 233.2-238.1, and 445.6-796.3 ka from EPICA Dome C ice core[EB/OL]. https://scholar.archive.org/fatcat/release/rev/b34ca5a2-f66f-4ad6-a747-4222a229d633, 2022.
|
| [55] |
Blunier T, Bender M L, Barnett B, et al. Planetary fertility during the past 400 ka based on the triple isotope composition of O2 in trapped gases from the Vostok ice core[J]. Climate of the Past, 2012, 8(5): 1509−1526. doi: 10.5194/cp-8-1509-2012
|
| [56] |
Li Boda, Yeung L Y, Hu Huanting, et al. Kinetic and equilibrium fractionation of O2 isotopologues during air-water gas transfer and implications for tracing oxygen cycling in the ocean[J]. Marine Chemistry, 2019, 210: 61−71. doi: 10.1016/j.marchem.2019.02.006
|
| [57] |
Jurikova H, Guha T, Abe O, et al. Variations in triple isotope composition of dissolved oxygen and primary production in a subtropical reservoir[J]. Biogeosciences, 2016, 13(24): 6683−6698. doi: 10.5194/bg-13-6683-2016
|
| [58] |
Jurikova H, Abe O, Shiah F K, et al. New constraints on biological production and mixing processes in the South China Sea from triple isotope composition of dissolved oxygen[J]. Biogeosciences, 2022, 19(7): 2043−2058. doi: 10.5194/bg-19-2043-2022
|
| [59] |
Brandon M, Landais A, Duchamp-Alphonse S, et al. Exceptionally high biosphere productivity at the beginning of Marine Isotopic Stage 11[J]. Nature Communications, 2020, 11(1): 2112. doi: 10.1038/s41467-020-15739-2
|
| [60] |
Hendricks M B, Bender M L, Barnett B A, et al. Triple oxygen isotope composition of dissolved O2 in the equatorial Pacific: a tracer of mixing, production, and respiration[J]. Journal of Geophysical Research: Oceans, 2005, 110(C12): C12021.
|
| [61] |
Manning C C, Stanley R H R, Nicholson D P, et al. Changes in gross oxygen production, net oxygen production, and air-water gas exchange during seasonal ice melt in Whycocomagh Bay, a Canadian estuary in the Bras d'Or Lake system[J]. Biogeosciences, 2019, 16(17): 3351−3376. doi: 10.5194/bg-16-3351-2019
|