Citation: | Gu Hao-ran,YANG Jun-gang,CUI Wei, et al. Reconstruction of Three-dimensional Temperature Field in South China Sea Based on Generative Adversarial Networks[J]. Haiyang Xuebao,2025, 47(x):1–13 |
[1] |
Oliver E C J, Donat M G, Burrows M T, et al. Longer and more frequent marine heatwaves over the past century[J]. Nature Communications, 2018, 9(1): 1324. doi: 10.1038/s41467-018-03732-9
|
[2] |
林明森, 何贤强, 贾永君, 等. 中国海洋卫星遥感技术进展[J]. 海洋学报, 2019, 41(10): 99−112. doi: 10.3969/j.issn.0253-4193.2019.10.007
Lin Mingsen, He Xianqiang, Jia Yongjun, et al. Advances in marine satellite remote sensing technology in China[J]. Haiyang Xuebao, 2019, 41(10): 99−112. doi: 10.3969/j.issn.0253-4193.2019.10.007
|
[3] |
Johnson G C, Hosoda S, Jayne S R, et al. Argo—two decades: global oceanography, revolutionized[J]. Annual Review of Marine Science, 2022, 14: 379−403. doi: 10.1146/annurev-marine-022521-102008
|
[4] |
王喜冬, 韩桂军, 李威, 等. 利用卫星观测海面信息反演三维温度场[J]. 热带海洋学报, 2011, 30(6): 10−17. doi: 10.3969/j.issn.1009-5470.2011.06.002
Wang Xidong, Han Guijun, Li Wei, et al. Reconstruction of ocean temperature profile using satellite observations[J]. Journal of Tropical Oceanography, 2011, 30(6): 10−17. doi: 10.3969/j.issn.1009-5470.2011.06.002
|
[5] |
Wu Xiangbai, Yan Xiaohui, Jo Y H, et al. Estimation of subsurface temperature anomaly in the North Atlantic using a self-organizing map neural network[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(11): 1675−1688. doi: 10.1175/JTECH-D-12-00013.1
|
[6] |
Khedouri E, Szczechowski C, Cheney R. Potential oceanographic applications of satellite altimetry for inferring subsurface thermal structure[C]//Proceedings OCEANS '83. San Francisco: IEEE, 1983: 274-280.
|
[7] |
Liu Lei, Peng Shiqiu, Huang Ruixin. Reconstruction of ocean's interior from observed sea surface information[J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1042−1056. doi: 10.1002/2016JC011927
|
[8] |
周超杰, 张杰, 杨俊钢, 等. 基于ROMS模式的南海SST与SSH四维变分同化研究[J]. 海洋学报, 2019, 41(1): 32−40. doi: 10.3969/j.issn.0253-4193.2019.01.004
Zhou Chaojie, Zhang Jie, Yang Jungang, et al. 4DVAR assimilation of SST and SSH data in South China Sea based on ROMS[J]. Haiyang Xuebao, 2019, 41(1): 32−40. doi: 10.3969/j.issn.0253-4193.2019.01.004
|
[9] |
Thacker W C, Long R B. Fitting dynamics to data[J]. Journal of Geophysical Research: Oceans, 1988, 93(C2): 1227−1240. doi: 10.1029/JC093iC02p01227
|
[10] |
Lapeyre G, Klein P. Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory[J]. Journal of Physical Oceanography, 2006, 36(2): 165−176. doi: 10.1175/JPO2840.1
|
[11] |
Nardelli B B, Santoleri R. Reconstructing synthetic profiles from surface data[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(4): 693−703. doi: 10.1175/1520-0426(2004)021<0693:RSPFSD>2.0.CO;2
|
[12] |
Fox D N, Teague W J, Barron C N, et al. The modular ocean data assimilation system (MODAS)[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 240−252. doi: 10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2
|
[13] |
Ali M M, Swain D, Weller R A. Estimation of ocean subsurface thermal structure from surface parameters: a neural network approach[J]. Geophysical Research Letters, 2004, 31(20): L20308.
|
[14] |
Su Hua, Zhang Tianyi, Lin Mengjing, et al. Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks[J]. Remote Sensing of Environment, 2021, 260: 112465. doi: 10.1016/j.rse.2021.112465
|
[15] |
Zhang Shuyu, Deng Yuesen, Niu Qianru, et al. Multivariate temporal self-attention network for subsurface thermohaline structure reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4507116.
|
[16] |
Meng Lingsheng, Yan Chi, Zhuang Wei, et al. Reconstructing high-resolution ocean subsurface and interior temperature and salinity anomalies from satellite observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4104114.
|
[17] |
Xiao Changjiang, Tong Xiaohua, Li Dandan, et al. Prediction of long lead monthly three-dimensional ocean temperature using time series gridded Argo data and a deep learning method[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102971. doi: 10.1016/j.jag.2022.102971
|
[18] |
Yan Hengqian, Zhang Ren, Wang Huizan, et al. Estimating daily subsurface thermohaline structure from satellite data: a deep network with embedded empirical orthogonal functions[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2024, 206: 104257. doi: 10.1016/j.dsr.2024.104257
|
[19] |
Xie Huarong, Xu Qing, Cheng Yongcun, et al. Reconstruction of subsurface temperature field in the South China Sea from satellite observations based on an attention U-net model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4209319.
|
[20] |
Wang Guihua, Su Jilan, Chu P C. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophysical Research Letters, 2003, 30(21): 2121.
|
[21] |
Zheng Quanan, Susanto R D, Ho C R, et al. Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2007, 112(C3): C03021.
|
[22] |
Nan Feng, He Zhigang, Zhou Hui, et al. Three long-lived anticyclonic eddies in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05002.
|
[23] |
Zheng Quanan, Hu Jianyu, Zhu Benlu, et al. Standing wave modes observed in the South China Sea deep basin[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4185−4199. doi: 10.1002/2014JC009957
|
[24] |
He Qingyou, Zhan Haigang, Cai Shuqun, et al. A new assessment of mesoscale eddies in the South China Sea: surface features, three‐dimensional structures, and thermohaline transports[J]. Journal of Geophysical Research: Oceans, 2018, 123(7): 4906−4929. doi: 10.1029/2018JC014054
|
[25] |
Xie Huarong, Xu Qing, Zheng Quanan, et al. Assessment of theoretical approaches to derivation of internal solitary wave parameters from multi-satellite images near the Dongsha Atoll of the South China Sea[J]. Acta Oceanologica Sinica, 2022, 41(6): 137−145. doi: 10.1007/s13131-022-2015-3
|
[26] |
Wang Weiqiang, Wang Chunzai. Formation and decay of the spring warm pool in the South China Sea[J]. Geophysical Research Letters, 2006, 33(2): L02615.
|
[27] |
王凡, 赵永平, 冯志纲, 等. 1998年春夏南海温盐结构及其变化特征[J]. 海洋学报, 2001, 23(5): 1−13. doi: 10.3321/j.issn:0253-4193.2001.05.001
Wang Fan, Zhao Yongping, Feng Zhigang, et al. Thermohaline structure and variation of the South China Sea in the spring and summer of 1998[J]. Haiyang Xuebao, 2001, 23(5): 1−13. doi: 10.3321/j.issn:0253-4193.2001.05.001
|
[28] |
Tan Hongjian, Cai Rongshuo, Wu Renguang. Summer marine heatwaves in the South China Sea: trend, variability and possible causes[J]. Advances in Climate Change Research, 2022, 13(3): 323−332. doi: 10.1016/j.accre.2022.04.003
|
[29] |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: NIPS, 2014.
|
[30] |
Perezhogin P, Zanna L, Fernandez‐Granda C. Generative data‐driven approaches for stochastic subgrid parameterizations in an idealized ocean model[J]. Journal of Advances in Modeling Earth Systems, 2023, 15(10): e2023MS003681. doi: 10.1029/2023MS003681
|