Citation: | WU Qianqian,LI Zhongqiao,ZHANG Song, et al. The burial of permafrost organic carbon in the Chukchi Sea and its response to climate change in the past 200 years[J]. Haiyang Xuebao,2024, 46(x):1–9 |
[1] |
Meyer V D, Hefter J, Köhler P, et al. Permafrost-carbon mobilization in Beringia caused by deglacial meltwater runoff, sea-level rise and warming[J]. Environmental Research Letters, 2019, 14(8): 085003. doi: 10.1088/1748-9326/ab2653
|
[2] |
Peterson B J, Holmes R M, McClelland J W, et al. Increasing river discharge to the Arctic Ocean[J]. Science, 2002, 298(5601): 2171−2173. doi: 10.1126/science.1077445
|
[3] |
Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): L09501.
|
[4] |
Bröder L, Andersson A, Tesi T, et al. Quantifying degradative loss of terrigenous organic carbon in surface sediments across the Laptev and East Siberian Sea[J]. Global Biogeochemical Cycles, 2019, 33(1): 85−99. doi: 10.1029/2018GB005967
|
[5] |
Stocker T F, Qin Dahe, Plattner G K, et al. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.
|
[6] |
Schuur E A G, McGuire A D, Schädel C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520(7546): 171−179. doi: 10.1038/nature14338
|
[7] |
Schuur E A G, Bockheim J, Canadell J G, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle[J]. Bioscience, 2008, 58(8): 701−714. doi: 10.1641/B580807
|
[8] |
Barnhart K R, Anderson R S, Overeem I, et al. Modeling erosion of ice-rich permafrost bluffs along the Alaskan Beaufort Sea coast[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(5): 1155−1179. doi: 10.1002/2013JF002845
|
[9] |
Günther F, Overduin P P, Yakshina I A, et al. Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction[J]. The Cryosphere, 2015, 9(1): 151−178. doi: 10.5194/tc-9-151-2015
|
[10] |
Bröder L, Tesi T, Salvadó J A, et al. Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior[J]. Biogeosciences, 2016, 13(17): 5003−5019. doi: 10.5194/bg-13-5003-2016
|
[11] |
Semiletov I P, Shakhova N E, Pipko I I, et al. Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea[J]. Biogeosciences, 2013, 10(9): 5977−5996. doi: 10.5194/bg-10-5977-2013
|
[12] |
Vonk J E, Sánchez-García L, van Dongen B E, et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia[J]. Nature, 2012, 489(7414): 137−140. doi: 10.1038/nature11392
|
[13] |
Keskitalo K, Tesi T, Bröder L, et al. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea[J]. Climate of the Past, 2017, 13(9): 1213−1226. doi: 10.5194/cp-13-1213-2017
|
[14] |
Tesi T, Muschitiello F, Smittenberg R H, et al. Massive remobilization of permafrost carbon during post-glacial warming[J]. Nature Communications, 2016, 7: 13653. doi: 10.1038/ncomms13653
|
[15] |
Winterfeld M, Mollenhauer G, Dummann W, et al. Deglacial mobilization of pre-aged terrestrial carbon from degrading permafrost[J]. Nature Communications, 2018, 9(1): 3666. doi: 10.1038/s41467-018-06080-w
|
[16] |
Martens J, Wild B, Pearce C, et al. Remobilization of old permafrost carbon to Chukchi Sea sediments during the end of the Last Deglaciation[J]. Global Biogeochemical Cycles, 2019, 33(1): 2−14. doi: 10.1029/2018GB005969
|
[17] |
Jakobsson M. Hypsometry and volume of the Arctic Ocean and its constituent seas[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(5): 1−18. (查阅网上资料, 请核对页码信息)
|
[18] |
Cronin T M, O’Regan M, Pearce C, et al. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins[J]. Climate of the Past, 2017, 13(9): 1097−1110. doi: 10.5194/cp-13-1097-2017
|
[19] |
Jakobsson M, Pearce C, Cronin T M, et al. Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records[J]. Climate of the Past, 2017, 13(8): 991−1005. doi: 10.5194/cp-13-991-2017
|
[20] |
Stein R, MacDonald R W, Naidu A S, et al. Organic carbon in arctic ocean sediments: sources, variability, burial, and paleoenvironmental significance[M]//Stein R, MacDonald R W. The Organic Carbon Cycle in the Arctic Ocean. Berlin Heidelberg: Springer, 2004: 169−314.
|
[21] |
Olefeldt D, Goswami S, Grosse G, et al. Circumpolar distribution and carbon storage of thermokarst landscapes[J]. Nature Communications, 2016, 7: 13043. doi: 10.1038/ncomms13043
|
[22] |
Lantuit H, Overduin P P, Couture N, et al. The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines[J]. Estuaries and Coasts, 2012, 35(2): 383−400. doi: 10.1007/s12237-010-9362-6
|
[23] |
Su Liang, Ren Jian, Sicre M A, et al. Changing sources and burial of organic carbon in the Chukchi Sea sediments with retreating sea ice over recent centuries[J]. Climate of the Past, 2023, 19(7): 1305−1320. doi: 10.5194/cp-19-1305-2023
|
[24] |
Bai Youcheng, Sicre M A, Ren Jian, et al. Centennial-scale variability of sea-ice cover in the Chukchi Sea since AD 1850 based on biomarker reconstruction[J]. Environmental Research Letters, 2022, 17(4): 044058. doi: 10.1088/1748-9326/ac5f92
|
[25] |
Hedges J I, Ertel J R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products[J]. Analytical Chemistry, 1982, 54(2): 174−178. doi: 10.1021/ac00239a007
|
[26] |
Tesi T, Semiletov I, Hugelius G, et al. Composition and fate of terrigenous organic matter along the Arctic land–ocean continuum in East Siberia: insights from biomarkers and carbon isotopes[J]. Geochimica et Cosmochimica Acta, 2014, 133: 235−256. doi: 10.1016/j.gca.2014.02.045
|
[27] |
Goñi M A, Ruttenberg K C, Eglinton T I. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico[J]. Nature, 1997, 389(6648): 275−278. doi: 10.1038/38477
|
[28] |
Goñi M A, Ruttenberg K C, Eglinton T I. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 1998, 62(18): 3055−3075. doi: 10.1016/S0016-7037(98)00217-8
|
[29] |
Tareq S M, Handa N, Tanoue E. A lignin phenol proxy record of mid Holocene paleovegetation changes at Lake DaBuSu, northeast China[J]. Journal of Geochemical Exploration, 2006, 88(1/3): 445−449.
|
[30] |
Farella N, Lucotte M, Louchouarn P, et al. Deforestation modifying terrestrial organic transport in the Rio Tapajós, Brazilian Amazon[J]. Organic Geochemistry, 2001, 32(12): 1443−1458. doi: 10.1016/S0146-6380(01)00103-6
|
[31] |
Yang Liyang, Wu Ying, Zhang Jing, et al. Burial of terrestrial and marine organic carbon in Jiaozhou Bay: different responses to urbanization[J]. Regional Environmental Change, 2011, 11(3): 707−714. doi: 10.1007/s10113-010-0202-9
|
[32] |
Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean?[J]. Organic Geochemistry, 1997, 27(5/6): 195−212.
|
[33] |
郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000.
Zheng Yongfei, Chen Jiangfeng. Stable Isotope Geochemistry[M]. Beijing: Science Press, 2000. (查阅网上资料, 未找到本条文献英文翻译, 请确认)
|
[34] |
Naidu A S, Cooper L W, Finney B P, et al. Organic carbon isotope ratios (δ13C) of Arctic Amerasian Continental shelf sediments[J]. International Journal of Earth Sciences, 2000, 89(3): 522−532. doi: 10.1007/s005310000121
|
[35] |
Goñi M A, O’Connor A E, Kuzyk Z Z, et al. Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4017−4035. doi: 10.1002/jgrc.20286
|
[36] |
Vonk J E, Gustafsson Ö. Permafrost-carbon complexities[J]. Nature Geoscience, 2013, 6(9): 675−676. doi: 10.1038/ngeo1937
|