Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
PAN Yuanfang,QIU Siting,SU Zhinan, et al. Trade-offs of CSR strategies in young mangrove plantation and their key influencing factors[J]. Haiyang Xuebao,2025, 48(x):1–13
Citation: PAN Yuanfang,QIU Siting,SU Zhinan, et al. Trade-offs of CSR strategies in young mangrove plantation and their key influencing factors[J]. Haiyang Xuebao,2025, 48(x):1–13

Trade-offs of CSR strategies in young mangrove plantation and their key influencing factors

  • Received Date: 2025-08-12
  • Rev Recd Date: 2025-10-10
  • Available Online: 2025-11-10
  • Mangrove ecosystems play a pivotal role in sustaining coastal ecological stability. However, under the compounded influences of climate change and human disturbance, these ecosystems are experiencing severe degradation. Artificial afforestation has emerged as the predominant restoration strategy. This study focuses on young mangrove plantations along the Guangxi coastline, investigating the ecological strategy differences among various species within these artificial plantations. Utilizing plant functional traits and the CSR (Competitor, Stress-tolerator, Ruderal) strategy theory, the study explores the relationships between functional traits, CSR strategies, and the driving factors behind these ecological patterns. The findings reveal that: (1) There are significant variations in CSR strategies among different species. Aegiceras corniculatum and Kandelia obovata predominantly exhibit the S strategy, Bruguiera gymnorrhiza is more inclined towards the C strategy, while Avicennia marina demonstrates a relatively balanced distribution across the CSR spectrum. (2) A significant correlation exists between CSR strategies and functional trait indicators. Specifically, the C strategy shows a significant positive correlation with chlorophyll content and tree height increment, and a significant negative correlation with leaf phosphorus content. The S strategy is significantly negatively correlated with tree height increment. The R strategy exhibits significant positive correlations with chlorophyll content and tree height increment, and significant negative correlations with leaf nitrogen content and leaf phosphorus content. (3) Flood time and depth are identified as key environmental factors driving the variation in CSR strategies within the young mangrove plantations. This study substantiates the applicability of CSR theory in intertidal artificial mangrove ecosystems, elucidating the mechanistic connections between plant adaptive strategies and ecological niche occupation. The results provide both theoretical insights and practical guidance for optimizing species selection and enhancing the efficiency of mangrove ecosystem restoration.
  • loading
  • [1]
    Duke N C, Meynecke J O, Dittmann S, et al. A world without mangroves?[J]. Science, 2007, 317(5834): 41−42.
    [2]
    Dalimunthe S A, Putri I A P. Mangrove rehabilitation in Seribu Islands at the crossroad of awareness and tokenism[M]//DasGupta R, Shaw R. Participatory Mangrove Management in a Changing Climate: Perspectives from the Asia-Pacific. Tokyo: Springer, 2017: 229−245, doi: 10.1007/978-4-431-56481-2.
    [3]
    Alongi D M. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change[J]. Estuarine, Coastal and Shelf Science, 2008, 76(1): 1−13. doi: 10.1016/j.ecss.2007.08.024
    [4]
    Donato D C, Kauffman J B, Murdiyarso D, et al. Mangroves among the most carbon-rich forests in the tropics[J]. Nature Geoscience, 2011, 4(5): 293−297. doi: 10.1038/ngeo1123
    [5]
    Jia Mingming, Wang Zongming, Zhang Yuanzhi, et al. Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 535−545. doi: 10.1016/j.jag.2018.07.025
    [6]
    范航清, 王文卿. 中国红树林保育的若干重要问题[J]. 厦门大学学报(自然科学版), 2017, 56(3): 323−330.

    Fan Hangqing, Wang Wenqing. Some thematic issues for mangrove conservation in China[J]. Journal of Xiamen University (Natural Science), 2017, 56(3): 323−330.
    [7]
    李瑞利, 杨芳, 王辉, 等. 红树林保护与修复标准发展现状及对策[J]. 北京大学学报(自然科学版), 2022, 58(5): 916−928.

    Li Ruili, Yang Fang, Wang Hui, et al. Current development status and countermeasures of mangrove protection and restoration standards[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(5): 916−928.
    [8]
    Wodehouse D C J, Rayment M B. Mangrove area and propagule number planting targets produce sub-optimal rehabilitation and afforestation outcomes[J]. Estuarine, Coastal and Shelf Science, 2019, 222: 91−102. doi: 10.1016/j.ecss.2019.04.003
    [9]
    Poorter L, Rose S A. Light-dependent changes in the relationship between seed mass and seedling traits: a meta-analysis for rain forest tree species[J]. Oecologia, 2005, 142(3): 378−387. doi: 10.1007/s00442-004-1732-y
    [10]
    Naskar S, Palit P K. Anatomical and physiological adaptations of mangroves[J]. Wetlands Ecology and Management, 2015, 23(3): 357−370. doi: 10.1007/s11273-014-9385-z
    [11]
    Kattge J, Bönisch G, Díaz S, et al. TRY plant trait database – enhanced coverage and open access[J]. Global Change Biology, 2020, 26(1): 119−188. doi: 10.1111/gcb.14904
    [12]
    刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4): 325−339. doi: 10.1360/N052014-00244

    Liu Xiaojuan, Ma Keping. Plant functional traits—concepts, applications and future directions[J]. Scientia Sinica Vitae, 2015, 45(4): 325−339. doi: 10.1360/N052014-00244
    [13]
    Wright I J, Westoby M, Reich P B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span[J]. Journal of Ecology, 2002, 90(3): 534−543. doi: 10.1046/j.1365-2745.2002.00689.x
    [14]
    Kattge J, Díaz S, Lavorel S, et al. TRY–a global database of plant traits[J]. Global Change Biology, 2011, 17(9): 2905−2935. doi: 10.1111/j.1365-2486.2011.02451.x
    [15]
    He Dong, Yan Enrong. Size-dependent variations in individual traits and trait scaling relationships within a shade-tolerant evergreen tree species[J]. American Journal of Botany, 2018, 105(7): 1165−1174. doi: 10.1002/ajb2.1132
    [16]
    Violle C, Navas M L, Vile D, et al. Let the concept of trait be functional![J] Oikos, 2007, 116(5): 882−892.
    [17]
    Wright I J, Dong Ning, Maire V, et al. Global climatic drivers of leaf size[J]. Science, 2017, 357(6354): 917−921. doi: 10.1126/science.aal4760
    [18]
    Májeková M, De Bello F, Doležal J, et al. Plant functional traits as determinants of population stability[J]. Ecology, 2014, 95(9): 2369−2374. doi: 10.1890/13-1880.1
    [19]
    张雄清, 张建国, 段爱国. 基于单木水平和林分水平的杉木兼容性林分蓄积量模型[J]. 林业科学, 2014, 50(1): 82−87

    Zhang Xiongqing, Zhang Jianguo, Duan Aiguo. Compatibility of stand volume model for Chinese fir based on tree-level and stand-level[J]. Scientia Silvae Sinicae, 2014, 50(1): 82−87.
    [20]
    盘远方, 潘良浩, 邱思婷, 等. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483−495. doi: 10.17521/cjpe.2023.0033

    Pan Yuanfang, Pan Lianghao, Qiu Siting, et al. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas[J]. Chinese Journal of Plant Ecology, 2024, 48(4): 483−495. doi: 10.17521/cjpe.2023.0033
    [21]
    Vargas-Larreta B, Castedo-Dorado F, Álvarez-González J G, et al. A generalized height-diameter model with random coefficients for uneven-aged stands in El Salto, Durango (Mexico)[J]. Forestry, 2009, 82(4): 445−462. doi: 10.1093/forestry/cpp016
    [22]
    Osnas J L D, Lichstein J W, Reich P B, et al. Global leaf trait relationships: mass, area, and the leaf economics spectrum[J]. Science, 2013, 340(6133): 741−744. doi: 10.1126/science.1231574
    [23]
    Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821−827. doi: 10.1038/nature02403
    [24]
    Díaz S, Kattge J, Cornelissen J H C, et al. The global spectrum of plant form and function[J]. Nature, 2016, 529(7585): 167−171. doi: 10.1038/nature16489
    [25]
    Grime J P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory[J]. The American Naturalist, 1977, 111(982): 1169−1194. doi: 10.1086/283244
    [26]
    Vivian L M. The evolutionary strategies that shape ecosystems by J. Philip Grime and Simon Pierce. John Wiley & Sons, West Sussex, 2012. xx + 244 pp. Price A$77.95 (paperback). ISBN 978-0-470-67482-6.[J]. Austral Ecology, 2013, 38(8): e13, doi: 10.1111/aec.12067
    [27]
    Pierce S, Negreiros D, Cerabolini B E L, et al. A global method for calculating plant CSR ecological strategies applied across biomes world-wide[J]. Functional Ecology, 2017, 31(2): 444−457. doi: 10.1111/1365-2435.12722
    [28]
    Han Xin, Huang Jihong, Yao Jie, et al. Effects of logging on the ecological strategy spectrum of a tropical montane rain forest[J]. Ecological Indicators, 2021, 128: 107812 doi: 10.1016/j.ecolind.2021.107812
    [29]
    Rosenfield M F, Müller S C, Overbeck G E. Short gradient, but distinct plant strategies: the CSR scheme applied to subtropical forests[J]. Journal of Vegetation Science, 2019, 30(5): 984−993. doi: 10.1111/jvs.12787
    [30]
    吕晓波, 李东海, 杨小波, 等. 红树林群落通过淹水时间及海水盐度的生态位分化实现物种共存[J]. 生物多样性, 2024, 32(3): 23302. doi: 10.17520/biods.2023302

    Lü Xiaobo, Li Donghai, Yang Xiaobo, et al. The species coexisted in mangrove communities through niche differentiation of flooding time and salinity[J]. Biodiversity Science, 2024, 32(3): 23302. doi: 10.17520/biods.2023302
    [31]
    Han Xin, Huang Jihong, Zang Runguo. Soil nutrients and climate seasonality drive differentiation of ecological strategies of species in forests across four climatic zones[J]. Plant and Soil, 2022, 473(1/2): 517−531.
    [32]
    Grime J P. Plant Strategies, Vegetation Processes, and Ecosystem Properties[M]. 2nd ed. New York: John Wiley & Sons Ltd. , 2006.
    [33]
    Wen Yabo, Chen Chen, He Baohui, et al. CSR ecological strategies and functional traits of the co-existing species along the succession in the tropical lowland rain forest[J]. Forests, 2022, 13(8): 1272. doi: 10.3390/f13081272
    [34]
    Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335−380. doi: 10.1071/BT02124
    [35]
    盘远方, 邱思婷, 苏治南, 等. 红树林人工幼林叶功能性状尺度变异及关联[J]. 湿地科学, 2024, 22(5): 641−650.

    Pan Yuanfang, Qiu Siting, Su Zhinan, et al. Scale variation and correlation in leaf functional traits of young mangrove plantation[J]. Wetland Science, 2024, 22(5): 641−650.
    [36]
    Marcoulides K M, Raykov T. Evaluation of variance inflation factors in regression models using latent variable modeling methods[J]. Educational and Psychological Measurement, 2019, 79(5): 874−882. doi: 10.1177/0013164418817803
    [37]
    Kuznetsova A, Brockhoff P B, Christensen R H B. ImerTest package: tests in linear mixed effects models[J]. Journal of Statistical Software, 2017, 82(13): 1−26.
    [38]
    Garssen A G, Baattrup-Pedersen A, Voesenek L A C J, et al. Riparian plant community responses to increased flooding: a meta-analysis[J]. Global Change Biology, 2015, 21(8): 2881−2890. doi: 10.1111/gcb.12921
    [39]
    Patra D K, Nayak M. Phytochemistry and biological activities of Bruguiera gymnorrhiza[M]//Murthy H N. Bioactive Compounds in Mangroves and Their Associates. Cham: Springer, 2025: 129−147.
    [40]
    靖元孝, 任延丽, 陈桂珠. 人工湿地污水处理系统3种红树植物生理生态特性[J]. 生态学报, 2005, 25(7): 1612−1619.

    Jing Yuanxiao, Ren Yanli, Chen Guizhu. Studies of eco-physiological characteristics of three mangrove species in constructed wetland sewage treatment system[J]. Acta Ecologica Sinica, 2005, 25(7): 1612−1619.
    [41]
    胡刚, 黎洁, 覃盈盈, 等. 广西北仑河口红树植物种群结构与动态特征[J]. 生态学报, 2018, 38(9): 3022−3034.

    Hu Gang, Li Jie, Qin Yingying, et al. Population structure and dynamics of mangrove species in Beilun Estuary, Guangxi, Southern China[J]. Acta Ecologica Sinica, 2018, 38(9): 3022−3034.
    [42]
    张小燕, Alison W K S, Tadashi K, 等. 种源地对两种红树叶片结构和功能的影响: 对温度的适应性遗传[J]. 植物生态学报, 2021, 45(11): 1241−1250. doi: 10.17521/cjpe.2021.0221

    Zhang Xiaoyan, Alison W K S, Tadashi K, et al. Effects of provenance on leaf structure and function of two mangrove species: the genetic adaptation to temperature[J]. Chinese Journal of Plant Ecology, 2021, 45(11): 1241−1250. doi: 10.17521/cjpe.2021.0221
    [43]
    Liu Xing, Lu Xiang, Yang Sheng, et al. Role of exogenous abscisic acid in freezing tolerance of mangrove Kandelia obovata under natural frost condition at near 32°N[J]. BMC Plant Biology, 2022, 22(1): 593, doi: 10.1186/s12870-022-03990-2
    [44]
    宁秋云, 赖廷和, 曹庆先, 等. 广西珍珠湾红树种群结构与动态特征[J]. 应用海洋学学报, 2022, 41(1): 42−52.

    Ning Qiuyun, Lai Tinghe, Cao Qingxian, et al. Structures and dynamics of mangrove populations in Zhenzhu Bay, Guangxi[J]. Journal of Applied Oceanography, 2022, 41(1): 42−52.
    [45]
    梁高都, 田义超, 吴彬, 等. 广西北部湾典型海岛红树林的结构特征、空间格局及种间种内关联性[J]. 生态学报, 2022, 42(17): 7244−7255.

    Liang Gaodou, Tian Yichao, Wu Bin, et al. Structural characteristics, spatial patterns and interspecific and intraspecific associations of mangroves in typical islands of Guangxi Beibu Gulf[J]. Acta Ecologica Sinica, 2022, 42(17): 7244−7255.
    [46]
    Allen J A, Duke N C. Bruguiera gymnorrhiza (large-leafed mangrove)[M]//Elevitch C R. Traditional Trees of Pacific Islands: Their Culture, Environment, and Use. Holualoa: Permanent Agriculture Resources (PAR), 2006: 139−152.
    [47]
    Peng Yalan, Wang Youshao, Fei Jiao, et al. Ecophysiological differences between three mangrove seedlings (Kandelia obovata, Aegiceras corniculatum, and Avicennia marina) exposed to chilling stress[J]. Ecotoxicology, 2015, 24(7/8): 1722−1732.
    [48]
    Ishfaq M, Tam N F Y, Lang Tao, et al. Nitrogen-phosphorus conservation and trade-offs in mangroves[J]. Plant and Soil, 2025, 512(1/2): 241−260.
    [49]
    Liu Huizi, An Xia, Liu Xing, et al. Molecular mechanism of salinity and waterlogging tolerance in mangrove Kandelia obovata[J]. Frontiers in Plant Science, 2024, 15: 1354249. doi: 10.3389/fpls.2024.1354249
    [50]
    Madhavan C, Meera S P, Kumar A. Anatomical adaptations of mangroves to the intertidal environment and their dynamic responses to various stresses[J]. Biological Reviews, 2025, 100(3): 1019−1046. doi: 10.1111/brv.13172
    [51]
    Ray R, Mukhopadhyay S K, Jana T K. Nitrogen and phosphorus budget in mangrove ecosystem[M]//Rastogi R P, Phulwaria M, Gupta D K. Mangroves: Ecology, Biodiversity and Management. Singapore: Springer, 2021: 127−155.
    [52]
    Van Eck W H J M, Van De Steeg H M, Blom C W P M, et al. Is tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species[J]. Oikos, 2004, 107(2): 393−405. doi: 10.1111/j.0030-1299.2004.13083.x
    [53]
    Wen Yabo, Chen Chen, Sun Tianxu, et al. The change pattern of CSR ecological strategy of trees and seedlings during different succession stages in tropical lowland rainforests[J]. Frontiers in Forests and Global Change, 2023, 6: 1236933. doi: 10.3389/ffgc.2023.1236933
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (102) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return