Citation: | Meng Qian,Huang Jue. A Study on Remote Sensing Monitoring of Nearshore Turbidity in Hong Kong Based on Sentinel-2[J]. Haiyang Xuebao,2025, 47(x):1–13 |
[1] |
Dogliotti A I, Ruddick K G, Nechad B, et al. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters[J]. Remote Sensing of Environment, 2015, 156: 157−168. doi: 10.1016/j.rse.2014.09.020
|
[2] |
Nienhuis J H, Ashton A D, Edmonds D A, et al. Global-scale human impact on delta morphology has led to net land area gain[J]. Nature, 2020, 577(7791): 514−518. doi: 10.1038/s41586-019-1905-9
|
[3] |
McCarthy M J, Muller-Karger F E, Otis D B, et al. Impacts of 40 years of land cover change on water quality in Tampa Bay, Florida[J]. Cogent Geoscience, 2018, 4(1): 1422956. doi: 10.1080/23312041.2017.1422956
|
[4] |
Li Jian, Chen Xiaoling, Tian Liqiao, et al. Improved capabilities of the Chinese high-resolution remote sensing satellite GF-1 for monitoring suspended particulate matter (SPM) in inland waters: radiometric and spatial considerations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106: 145−156. doi: 10.1016/j.isprsjprs.2015.05.009
|
[5] |
Liu Ge, Li Lin, Song Kaishan, et al. An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a concentration in various turbid case-2 waters[J]. Remote Sensing of Environment, 2020, 239: 111648. doi: 10.1016/j.rse.2020.111648
|
[6] |
Peterson K T, Sagan V, Sloan J J. Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing[J]. GIScience & Remote Sensing, 2020, 57(4): 510−525.
|
[7] |
Zheng Lufei, Qiu Zhongfeng, Zhou Yan, et al. Comparisons of algorithms to estimate water turbidity in the coastal areas of China[J]. International Journal of Remote Sensing, 2016, 37(24): 6165−6186. doi: 10.1080/01431161.2016.1256510
|
[8] |
Wang Shengqiang, Mao Ying, Zheng Lufei, et al. Remote sensing of water turbidity in the Eastern China Seas from Geostationary Ocean Colour Imager[J]. International Journal of Remote Sensing, 2020, 41(11): 4080−4101. doi: 10.1080/01431161.2020.1714775
|
[9] |
El-Alem A, Chokmani K. A machine learning-based regional hybrid model for remote retrieving turbidity from Landsat imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8021605.
|
[10] |
Drusch M, Del Bello U, Carlier S, et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012, 120: 25−36. doi: 10.1016/j.rse.2011.11.026
|
[11] |
Tian Liqiao, Wai O W H, Chen Xiaoling, et al. Assessment of total suspended sediment distribution under varying tidal conditions in deep bay: initial results from HJ-1A/1B satellite CCD images[J]. Remote Sensing, 2014, 6(10): 9911−9929. doi: 10.3390/rs6109911
|
[12] |
Nazeer M, Nichol J E. Combining Landsat TM/ETM+ and HJ-1 A/B CCD sensors for monitoring coastal water quality in Hong Kong[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1898−1902. doi: 10.1109/LGRS.2015.2436899
|
[13] |
Hafeez S, Wong M S. Measurement of coastal water quality indicators using Sentinel-2; an evaluation over Hong Kong and the Pearl River Estuary[C]//IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 8249-8252.
|
[14] |
Kuhn C, De Matos Valerio A, Ward N, et al. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity[J]. Remote Sensing of Environment, 2019, 224: 104−118. doi: 10.1016/j.rse.2019.01.023
|
[15] |
Warren M A, Simis S G H, Selmes N. Complementary water quality observations from high and medium resolution Sentinel sensors by aligning chlorophyll-a and turbidity algorithms[J]. Remote Sensing of Environment, 2021, 265: 112651. doi: 10.1016/j.rse.2021.112651
|
[16] |
Wilson R T. Py6S: a Python interface to the 6S radiative transfer model[J]. Computers & Geosciences, 2013, 51: 166−171.
|
[17] |
Nazeer M, Nichol J E, Yung Y K. Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment[J]. International Journal of Remote Sensing, 2014, 35(16): 6271−6291. doi: 10.1080/01431161.2014.951742
|
[18] |
Ouma Y O, Noor K, Herbert K. Modelling reservoir chlorophyll-a, TSS, and turbidity using Sentinel-2A MSI and Landsat-8 OLI satellite sensors with empirical multivariate regression[J]. Journal of Sensors, 2020, 2020: 8858408.
|
[19] |
Murphy S, Hård J. Atmospheric correction of Sentinel 2 imagery in Google Earth Engine using Py6S(2020)[Z]. https://github.com/samsammurphy/gee-atmcorr-S2. (不确定本条文献类型及格式是否正确,请确认)
Murphy S, Hård J. Atmospheric correction of Sentinel 2 imagery in Google Earth Engine using Py6S(2020)[Z]. https://github.com/samsammurphy/gee-atmcorr-S2. (不确定本条文献类型及格式是否正确,请确认)
|
[20] |
Kwong I H Y, Wong F K K, Fung T. Automatic mapping and monitoring of marine water quality parameters in Hong Kong using Sentinel-2 image time-series and Google Earth Engine cloud computing[J]. Frontiers in Marine Science, 2022, 9: 871470. doi: 10.3389/fmars.2022.871470
|
[21] |
Gons H J. Optical teledetection of chlorophyll a in turbid inland waters[J]. Environmental Science & Technology, 1999, 33(7): 1127−1132.
|
[22] |
Gower J, King S, Borstad G, et al. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer[J]. International Journal of Remote Sensing, 2005, 26(9): 2005−2012. doi: 10.1080/01431160500075857
|
[23] |
Topp S N, Pavelsky T M, Jensen D, et al. Research trends in the use of remote sensing for inland water quality science: moving towards multidisciplinary applications[J]. Water, 2020, 12(1): 169. doi: 10.3390/w12010169
|
[24] |
Ma Yue, Song Kaishan, Wen Zhidan, et al. Remote sensing of turbidity for lakes in northeast China using Sentinel-2 images with machine learning algorithms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9132−9146. doi: 10.1109/JSTARS.2021.3109292
|
[25] |
Wang Jun, Tong Yan, Feng Lian, et al. Satellite‐observed decreases in water turbidity in the Pearl River Estuary: potential linkage with sea‐level rise[J]. Journal of Geophysical Research: Oceans, 2021, 126(4): e2020JC016842. doi: 10.1029/2020JC016842
|
[26] |
李盈盈. 辽河口浊度遥感反演及时空变化分析[D]. 大连: 大连理工大学, 2022.
Li Yingying. Water turbidity retrieval and spatial-temporal analysis based on remote sensing data in the Liao River Estuary[D]. Dalian: Dalian University of Technology, 2022.
|
[27] |
黎栩霞, 王裕东, 肖佑鹏, 等. 深圳近岸海域水质遥感监测及时空变化[J]. 环境工程, 2024, 42(1): 243−252.
Li Xuxia, Wang Yudong, Xiao Youpeng, et al. Quality monitoring of Shenzhen’s coastal waters by satellite and its spatiotemporal variation[J]. Environmental Engineering, 2024, 42(1): 243−252.
|
[28] |
Hou Xuejiao, Feng Lian, Duan Hongtao, et al. Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China[J]. Remote Sensing of Environment, 2017, 190: 107−121. doi: 10.1016/j.rse.2016.12.006
|
[29] |
Lin Jie, Zou Xinqing, Huang Faming. Effects of the thermal discharge from an offshore power plant on plankton and macrobenthic communities in subtropical China[J]. Marine Pollution Bulletin, 2018, 131: 106−114. doi: 10.1016/j.marpolbul.2018.04.005
|
[30] |
Jiang Cong, Xiong Lihua, Wang Dingbao, et al. Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters[J]. Journal of Hydrology, 2015, 522: 326−338. doi: 10.1016/j.jhydrol.2014.12.060
|
[31] |
Zheng Zhubin, Li Yunmei, Guo Yulong, et al. Landsat-based long-term monitoring of total suspended matter concentration pattern change in the wet season for Dongting Lake, China[J]. Remote Sensing, 2015, 7(10): 13975−13999. doi: 10.3390/rs71013975
|
[32] |
Lu Jian, Jiang Jingbo, Li Anchun, et al. Impact of Typhoon Chan-hom on the marine environment and sediment dynamics on the inner shelf of the East China Sea: in-situ seafloor observations[J]. Marine Geology, 2018, 406: 72−83. doi: 10.1016/j.margeo.2018.09.009
|
[33] |
Liu Dong, Bai Yan, Wei Xiaodao, et al. Sewage treatment decreased organic carbon resources in Hong Kong waters during 1986-2020[J]. Environmental Pollution, 2023, 335: 122219. doi: 10.1016/j.envpol.2023.122219
|