Citation: | , , , et al. Research on Ship based Digital Image Processing and Sea Ice Concentration Recognition Based on Deep Learning[J]. Haiyang Xuebao,2025, 47(x):1–11 |
[1] |
苏洁, 郝光华, 叶鑫欣, 等. 极区海冰密集度AMSR-E数据反演算法的试验与验证[J]. 遥感学报, 2013, 17(3): 495−513. doi: 10.11834/jrs.20132043
Su Jie, Hao Guanghua, Ye Xinxin, et al. The experiment and validation of sea ice concentration AMSR-E retrieval algorithm in polar region[J]. Journal of Remote Sensing, 2013, 17(3): 495−513. doi: 10.11834/jrs.20132043
|
[2] |
魏彬航, 李宝辉, 刘煜, 等. 辽东湾海冰分布面积历史数据重构及其影响因素分析[J]. 海洋学报, 2023, 45(11): 20−33.
Wei Binhang, Li Baohui, Liu Yu, et al. Reconstruction of sea ice extent in the Liaodong Bay and analysis of its impact factors[J]. Haiyang Xuebao, 2023, 45(11): 20−33.
|
[3] |
崔洪宇, 胡大士, 孔帅, 等. 基于正则化方法的雪龙号破冰船冰载荷反演的研究[J]. 中国造船, 2020, 61(1): 109−119. doi: 10.3969/j.issn.1000-4882.2020.01.011
Cui Hongyu, Hu Dashi, Kong Shuai, et al. Study on inversion of ice load for Xue Long icebreaker based on regularization method[J]. Shipbuilding of China, 2020, 61(1): 109−119. doi: 10.3969/j.issn.1000-4882.2020.01.011
|
[4] |
邓娟, 柯长青, 雷瑞波, 等. 2009年春夏季北极海冰运动及其变化监测[J]. 极地研究, 2013, 25(1): 96−104. doi: 10.3724/SP.J.1084.2013.00096
Deng Juan, Ke Changqing, Lei Ruibo, et al. Monitoring the motion of arctic sea-ice and its changes in summer and winter 2009[J]. Chinese Journal of Polar Research, 2013, 25(1): 96−104. doi: 10.3724/SP.J.1084.2013.00096
|
[5] |
张培宣, 陈晓东, 孔帅, 等. 基于Hough变换原理的海冰厚度识别方法[J]. 海洋学报, 2022, 44(7): 161−169. doi: 10.12284/j.issn.0253-4193.2022.7.hyxb202207015
Zhang Peixuan, Chen Xiaodong, Kong Shuai, et al. Research on sea ice thickness identification method based on Hough transform principle[J]. Haiyang Xuebao, 2022, 44(7): 161−169. doi: 10.12284/j.issn.0253-4193.2022.7.hyxb202207015
|
[6] |
Laxon S W, Giles K A, Ridout A L, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume[J]. Geophysical Research Letters, 2013, 40(4): 732−737. doi: 10.1002/grl.50193
|
[7] |
Aldenhoff W, Berg A, Eriksson L E B. Sea ice concentration estimation from Sentinel-1 Synthetic Aperture Radar images over the Fram Strait[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China: IEEE, 2016: 7675−7677.
|
[8] |
Liu Yinghui, Key J, Mahoney R. Sea and freshwater ice concentration from VIIRS on suomi NPP and the future JPSS satellites[J]. Remote Sensing, 2016, 8(6): 523. doi: 10.3390/rs8060523
|
[9] |
郑付强, 匡定波, 胡勇, 等. 基于U-ASPP-Net的北极独立海冰精细识别方法[J]. 红外与毫米波学报, 2021, 40(6): 798−808. doi: 10.11972/j.issn.1001-9014.2021.06.014
Zheng Fuqiang, Kuang Dingbo, Hu Yong, et al. Refined segmentation method based on U-ASPP-Net for Arctic independent sea ice[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 798−808. doi: 10.11972/j.issn.1001-9014.2021.06.014
|
[10] |
周嘉儒, 卢鹏, 王庆凯, 等. 基于视频图像获取冰面特征的自动检测算法研究[J]. 水利科学与寒区工程, 2021, 4(5): 60−65. doi: 10.3969/j.issn.2096-5419.2021.05.014
Zhou Jiaru, Lu Peng, Wang Qingkai, et al. Research on automatic detection algorithm based on video image acquisition for ice surface feature[J]. Hydro Science and Cold Zone Engineering, 2021, 4(5): 60−65. doi: 10.3969/j.issn.2096-5419.2021.05.014
|
[11] |
Toyota T, Haas C, Tamura T. Size distribution and shape properties of relatively small sea-ice floes in the Antarctic marginal ice zone in late winter[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2011, 58(9/10): 1182−1193.
|
[12] |
季顺迎, 王安良, 王宇新, 等. 渤海海冰现场监测的数字图像技术及其应用[J]. 海洋学报, 2011, 33(4): 79−87.
Ji Shunying, Wang Anliang, Wang Yuxin, et al. A digital image technology and its application for the sea ice field observation in the Bohai Sea[J]. Haiyang Xuebao, 2011, 33(4): 79−87.
|
[13] |
Blunt J D, Garas V Y, Matskevitch D G, et al. Image analysis techniques for high arctic, deepwater operation support[C]//Proceedings of the OTC Arctic Technology Conference. Houston: OTC, 2012.
|
[14] |
Ijitona T B, Ren Jinchang, Hwang P B. SAR sea ice image segmentation using watershed with intensity-based region merging[C]//Proceedings of 2014 IEEE International Conference on Computer and Information Technology. Xi'an, China: IEEE, 2014: 168−172.
|
[15] |
Zhang Qin, Skjetne R, Metrikin I, et al. Image processing for ice floe analyses in broken-ice model testing[J]. Cold Regions Science and Technology, 2015, 111: 27−38. doi: 10.1016/j.coldregions.2014.12.004
|
[16] |
Kalke H, Loewen M. Support vector machine learning applied to digital images of river ice conditions[J]. Cold Regions Science and Technology, 2018, 155: 225−236. doi: 10.1016/j.coldregions.2018.08.014
|
[17] |
田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 440−468.
Tian Xuan, Wang Liang, Ding Qi. Review of image semantic segmentation based on deep learning[J]. Journal of Software, 2019, 30(2): 440−468.
|
[18] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 3431−3440.
|
[19] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495. doi: 10.1109/TPAMI.2016.2644615
|
[20] |
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834−848. doi: 10.1109/TPAMI.2017.2699184
|
[21] |
Everingham M, Van Gool L, Williams C K I, et al. The Pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303−338. doi: 10.1007/s11263-009-0275-4
|
[22] |
Garcia-Garcia A, Orts-Escolano S, Oprea S, et al. A survey on deep learning techniques for image and video semantic segmentation[J]. Applied Soft Computing, 2018, 70: 41−65. doi: 10.1016/j.asoc.2018.05.018
|
[23] |
Zhu Xiaoxiang, Tuia D, Mou Lichao, et al. Deep learning in remote sensing: a comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8−36. doi: 10.1109/MGRS.2017.2762307
|
[24] |
Hesamian M H, Jia Wenjing, He Xiangjian, et al. Deep learning techniques for medical image segmentation: achievements and challenges[J]. Journal of Digital Imaging, 2019, 32(4): 582−596. doi: 10.1007/s10278-019-00227-x
|
[25] |
Cooke C L V, Scott K A. Estimating sea ice concentration from SAR: training convolutional neural networks with passive microwave data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4735−4747. doi: 10.1109/TGRS.2019.2892723
|
[26] |
Wang Lei, Scott K A, Xu Linlin, et al. Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: a case study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4524−4533. doi: 10.1109/TGRS.2016.2543660
|
[27] |
Wang Yiran, Li Xiaoming. Arctic sea ice cover data from spaceborne synthetic aperture radar by deep learning[J]. Earth System Science Data, 2021, 13(6): 2723−2742. doi: 10.5194/essd-13-2723-2021
|
[28] |
宋巍, 祝敏, 石少华, 等. 基于改进DeepLabV3+的轻量化SAR图像冰间水道分割[J]. 计算机工程与应用, 2024(4). (查阅网上资料, 未找到对应的卷期页码信息, 请确认)
Song Wei, Zhu Min, Shi Shaohua, et al. Lightweight SAR image lead segmentation based on improved DeepLabV3+[J]. Computer Engineering and Applications, 2024(4).
|
[29] |
孙士昌, 王志勇, 李振今, 等. 基于改进DeepLabV3+模型的海冰提取方法——以北极格陵兰海为例[J]. 海洋学报, 2024, 46(8): 131−142.
Sun Shichang, Wang Zhiyong, Li Zhenjin, et al. An extraction method for sea ice based on improved DeepLabV3+ model: taking the arctic Greenland sea as an example[J]. Haiyang Xuebao, 2024, 46(8): 131−142.
|
[30] |
Zhang Chengqian, Chen Xiaodong, Ji Shunying. Semantic image segmentation for sea ice parameters recognition using deep convolutional neural networks[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102885, doi: 10.1016/j.jag.2022.102885
|
[31] |
Chen L C, Zhu Yukun, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018, doi: 10.1007/978-3-030-01234-2_49.
|