Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
, , , et al. Research on Ship based Digital Image Processing and Sea Ice Concentration Recognition Based on Deep Learning[J]. Haiyang Xuebao,2025, 47(x):1–11
Citation: , , , et al. Research on Ship based Digital Image Processing and Sea Ice Concentration Recognition Based on Deep Learning[J]. Haiyang Xuebao,2025, 47(x):1–11

Research on Ship based Digital Image Processing and Sea Ice Concentration Recognition Based on Deep Learning

  • Received Date: 2024-08-20
  • Rev Recd Date: 2024-12-20
  • Available Online: 2025-01-21
  • Sea ice is a typical environmental feature of polar sea areas, and pixel-level classification of ship-borne video images can provide high-resolution sea ice information. Due to the complex light conditions and sea ice morphology in polar scenes, traditional computer graphics methods lack the generalization needed for intelligent identification of sea ice elements. Therefore, this paper deploys a deep learning approach based on the DeeplabV3+ semantic segmentation network structure to identify sea ice elements in polar scenes. The dataset consists of sea ice images captured by the icebreaker ‘Xuelong’ during its navigation in ice-covered regions, and also is used to train and validate the deep learning model. To meet the requirements of sea ice element identification and the characteristics of the underway observation video images, the pixel information is divided into four semantic categories: sea ice, sky, seawater, and ship. The deep learning model is built based on the correlation between image information and semantic information in the training set. The model trained is used to predict the semantic information of pixels in the validation set or other images, thereby achieving automatic identification of sea ice information. To study the robustness of this method, the influences of sea ice concentration, lighting conditions, and sea ice types on the identification results was further analyzed. Additionally, the effects of dataset size and the number of iterations on identification accuracy were examined. The recognition results for images show that the mean Intersection over Union (mIoU) for the four types of semantic information exceeds 95%, indicating that the deep learning method can accurately classify various elements in the polar environment.
  • loading
  • [1]
    苏洁, 郝光华, 叶鑫欣, 等. 极区海冰密集度AMSR-E数据反演算法的试验与验证[J]. 遥感学报, 2013, 17(3): 495−513. doi: 10.11834/jrs.20132043

    Su Jie, Hao Guanghua, Ye Xinxin, et al. The experiment and validation of sea ice concentration AMSR-E retrieval algorithm in polar region[J]. Journal of Remote Sensing, 2013, 17(3): 495−513. doi: 10.11834/jrs.20132043
    [2]
    魏彬航, 李宝辉, 刘煜, 等. 辽东湾海冰分布面积历史数据重构及其影响因素分析[J]. 海洋学报, 2023, 45(11): 20−33.

    Wei Binhang, Li Baohui, Liu Yu, et al. Reconstruction of sea ice extent in the Liaodong Bay and analysis of its impact factors[J]. Haiyang Xuebao, 2023, 45(11): 20−33.
    [3]
    崔洪宇, 胡大士, 孔帅, 等. 基于正则化方法的雪龙号破冰船冰载荷反演的研究[J]. 中国造船, 2020, 61(1): 109−119. doi: 10.3969/j.issn.1000-4882.2020.01.011

    Cui Hongyu, Hu Dashi, Kong Shuai, et al. Study on inversion of ice load for Xue Long icebreaker based on regularization method[J]. Shipbuilding of China, 2020, 61(1): 109−119. doi: 10.3969/j.issn.1000-4882.2020.01.011
    [4]
    邓娟, 柯长青, 雷瑞波, 等. 2009年春夏季北极海冰运动及其变化监测[J]. 极地研究, 2013, 25(1): 96−104. doi: 10.3724/SP.J.1084.2013.00096

    Deng Juan, Ke Changqing, Lei Ruibo, et al. Monitoring the motion of arctic sea-ice and its changes in summer and winter 2009[J]. Chinese Journal of Polar Research, 2013, 25(1): 96−104. doi: 10.3724/SP.J.1084.2013.00096
    [5]
    张培宣, 陈晓东, 孔帅, 等. 基于Hough变换原理的海冰厚度识别方法[J]. 海洋学报, 2022, 44(7): 161−169. doi: 10.12284/j.issn.0253-4193.2022.7.hyxb202207015

    Zhang Peixuan, Chen Xiaodong, Kong Shuai, et al. Research on sea ice thickness identification method based on Hough transform principle[J]. Haiyang Xuebao, 2022, 44(7): 161−169. doi: 10.12284/j.issn.0253-4193.2022.7.hyxb202207015
    [6]
    Laxon S W, Giles K A, Ridout A L, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume[J]. Geophysical Research Letters, 2013, 40(4): 732−737. doi: 10.1002/grl.50193
    [7]
    Aldenhoff W, Berg A, Eriksson L E B. Sea ice concentration estimation from Sentinel-1 Synthetic Aperture Radar images over the Fram Strait[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China: IEEE, 2016: 7675−7677.
    [8]
    Liu Yinghui, Key J, Mahoney R. Sea and freshwater ice concentration from VIIRS on suomi NPP and the future JPSS satellites[J]. Remote Sensing, 2016, 8(6): 523. doi: 10.3390/rs8060523
    [9]
    郑付强, 匡定波, 胡勇, 等. 基于U-ASPP-Net的北极独立海冰精细识别方法[J]. 红外与毫米波学报, 2021, 40(6): 798−808. doi: 10.11972/j.issn.1001-9014.2021.06.014

    Zheng Fuqiang, Kuang Dingbo, Hu Yong, et al. Refined segmentation method based on U-ASPP-Net for Arctic independent sea ice[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 798−808. doi: 10.11972/j.issn.1001-9014.2021.06.014
    [10]
    周嘉儒, 卢鹏, 王庆凯, 等. 基于视频图像获取冰面特征的自动检测算法研究[J]. 水利科学与寒区工程, 2021, 4(5): 60−65. doi: 10.3969/j.issn.2096-5419.2021.05.014

    Zhou Jiaru, Lu Peng, Wang Qingkai, et al. Research on automatic detection algorithm based on video image acquisition for ice surface feature[J]. Hydro Science and Cold Zone Engineering, 2021, 4(5): 60−65. doi: 10.3969/j.issn.2096-5419.2021.05.014
    [11]
    Toyota T, Haas C, Tamura T. Size distribution and shape properties of relatively small sea-ice floes in the Antarctic marginal ice zone in late winter[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2011, 58(9/10): 1182−1193.
    [12]
    季顺迎, 王安良, 王宇新, 等. 渤海海冰现场监测的数字图像技术及其应用[J]. 海洋学报, 2011, 33(4): 79−87.

    Ji Shunying, Wang Anliang, Wang Yuxin, et al. A digital image technology and its application for the sea ice field observation in the Bohai Sea[J]. Haiyang Xuebao, 2011, 33(4): 79−87.
    [13]
    Blunt J D, Garas V Y, Matskevitch D G, et al. Image analysis techniques for high arctic, deepwater operation support[C]//Proceedings of the OTC Arctic Technology Conference. Houston: OTC, 2012.
    [14]
    Ijitona T B, Ren Jinchang, Hwang P B. SAR sea ice image segmentation using watershed with intensity-based region merging[C]//Proceedings of 2014 IEEE International Conference on Computer and Information Technology. Xi'an, China: IEEE, 2014: 168−172.
    [15]
    Zhang Qin, Skjetne R, Metrikin I, et al. Image processing for ice floe analyses in broken-ice model testing[J]. Cold Regions Science and Technology, 2015, 111: 27−38. doi: 10.1016/j.coldregions.2014.12.004
    [16]
    Kalke H, Loewen M. Support vector machine learning applied to digital images of river ice conditions[J]. Cold Regions Science and Technology, 2018, 155: 225−236. doi: 10.1016/j.coldregions.2018.08.014
    [17]
    田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 440−468.

    Tian Xuan, Wang Liang, Ding Qi. Review of image semantic segmentation based on deep learning[J]. Journal of Software, 2019, 30(2): 440−468.
    [18]
    Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 3431−3440.
    [19]
    Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495. doi: 10.1109/TPAMI.2016.2644615
    [20]
    Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834−848. doi: 10.1109/TPAMI.2017.2699184
    [21]
    Everingham M, Van Gool L, Williams C K I, et al. The Pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303−338. doi: 10.1007/s11263-009-0275-4
    [22]
    Garcia-Garcia A, Orts-Escolano S, Oprea S, et al. A survey on deep learning techniques for image and video semantic segmentation[J]. Applied Soft Computing, 2018, 70: 41−65. doi: 10.1016/j.asoc.2018.05.018
    [23]
    Zhu Xiaoxiang, Tuia D, Mou Lichao, et al. Deep learning in remote sensing: a comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8−36. doi: 10.1109/MGRS.2017.2762307
    [24]
    Hesamian M H, Jia Wenjing, He Xiangjian, et al. Deep learning techniques for medical image segmentation: achievements and challenges[J]. Journal of Digital Imaging, 2019, 32(4): 582−596. doi: 10.1007/s10278-019-00227-x
    [25]
    Cooke C L V, Scott K A. Estimating sea ice concentration from SAR: training convolutional neural networks with passive microwave data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4735−4747. doi: 10.1109/TGRS.2019.2892723
    [26]
    Wang Lei, Scott K A, Xu Linlin, et al. Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: a case study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4524−4533. doi: 10.1109/TGRS.2016.2543660
    [27]
    Wang Yiran, Li Xiaoming. Arctic sea ice cover data from spaceborne synthetic aperture radar by deep learning[J]. Earth System Science Data, 2021, 13(6): 2723−2742. doi: 10.5194/essd-13-2723-2021
    [28]
    宋巍, 祝敏, 石少华, 等. 基于改进DeepLabV3+的轻量化SAR图像冰间水道分割[J]. 计算机工程与应用, 2024(4). (查阅网上资料, 未找到对应的卷期页码信息, 请确认)

    Song Wei, Zhu Min, Shi Shaohua, et al. Lightweight SAR image lead segmentation based on improved DeepLabV3+[J]. Computer Engineering and Applications, 2024(4).
    [29]
    孙士昌, 王志勇, 李振今, 等. 基于改进DeepLabV3+模型的海冰提取方法——以北极格陵兰海为例[J]. 海洋学报, 2024, 46(8): 131−142.

    Sun Shichang, Wang Zhiyong, Li Zhenjin, et al. An extraction method for sea ice based on improved DeepLabV3+ model: taking the arctic Greenland sea as an example[J]. Haiyang Xuebao, 2024, 46(8): 131−142.
    [30]
    Zhang Chengqian, Chen Xiaodong, Ji Shunying. Semantic image segmentation for sea ice parameters recognition using deep convolutional neural networks[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102885, doi: 10.1016/j.jag.2022.102885
    [31]
    Chen L C, Zhu Yukun, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018, doi: 10.1007/978-3-030-01234-2_49.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (9) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return