Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Wang Juntao,Sun Deyong,Wang Shengqiang, et al. Remote sensing analysis of spatial and temporal variations of phytoplankton bloom phenological characteristics in global ocean[J]. Haiyang Xuebao,2024, 46(x):1–10
Citation: Wang Juntao,Sun Deyong,Wang Shengqiang, et al. Remote sensing analysis of spatial and temporal variations of phytoplankton bloom phenological characteristics in global ocean[J]. Haiyang Xuebao,2024, 46(x):1–10

Remote sensing analysis of spatial and temporal variations of phytoplankton bloom phenological characteristics in global ocean

  • Available Online: 2024-08-16
  • The phenomenon of marine phytoplankton bloom in ocean refers to the annual cycle increase in biomass caused by rapid reproduction, which plays an important role in the biochemical cycles of marine organisms. However, the spatiotemporal variation characteristics of global phytoplankton blooms and their response mechanisms to the environment still require further exploration. Based on the chlorophyll-a products of the MODIS-Aqua (Moderate Resolution Imaging Spectroradiometer) from 2003 to 2022, we extracted the bloom indexes of global ocean phytoplankton (the ratio of bloom duration and bloom intensity). Then, we analyzed their spatiotemporal characteristics, trends, and correlations with environmental factors. The results indicated that there are significant seasonal and latitudinal difference in the distribution of the bloom indexes. Blooms in high latitudes of the Northern Hemisphere mainly occurring from April to October, while in mid-low latitudes, blooms mainly occur from November to March of the following year. In the Southern Hemisphere, blooms develop in the month of November and persist until March of the following year in high latitudes, while those in low and middle latitudes occur from May to September. The ratio of bloom duration and bloom intensity shows a decreasing trend mainly in the mid-low latitude regions of the North Pacific, while increasing trends are observed in mid-high latitude regions of the Southern Hemisphere. The distribution and trends changes of blooms are both regulated by environmental factors. Sea surface temperature and photosynthetically active radiation promote blooms intensity in high latitude waters, but inhibit them in low latitude waters. Meanwhile, the wind speed plays a restraining role in the high latitude sea area and a promoting role in the low latitude sea area.
  • loading
  • [1]
    Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237−240. doi: 10.1126/science.281.5374.237
    [2]
    Racault M F, Le Quéré C, Buitenhuis E, et al. Phytoplankton phenology in the global ocean[J]. Ecological Indicators, 2012, 14(1): 152−163. doi: 10.1016/j.ecolind.2011.07.010
    [3]
    Sigman D M, Hain M P. The biological productivity of the ocean[J]. Nature Education Knowledge, 2012, 3(10): 21. (查阅网上资料, 请确认修改是否正确

    Sigman D M, Hain M P. The biological productivity of the ocean[J]. Nature Education Knowledge, 2012, 3(10): 21. (查阅网上资料, 请确认修改是否正确)
    [4]
    Ware D M, Thomson R E. Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific[J]. Science, 2005, 308(5726): 1280−1284. doi: 10.1126/science.1109049
    [5]
    Evans W, Hales B, Strutton P G. Seasonal cycle of surface ocean pCO2 on the Oregon shelf[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05012, doi: 10.1029/2010JC006625
    [6]
    孙友旭, 任景玲, 刘素美, 等. 春季水华对南黄海总溶解态无机砷生物地球化学行为的影响[J]. 海洋学报, 2015, 37(4): 16−27.

    Sun Youxu, Ren Jingling, Liu Sumei, et al. The impact of spring bloom on the biogeochemical behavior of total dissolved inorganic arsenic in the South Yellow Sea[J]. Haiyang Xuebao, 2015, 37(4): 16−27.
    [7]
    田洪阵, 刘沁萍, Goes J I, 等. 近20年渤海叶绿素a浓度时空变化[J]. 海洋学报, 2019, 41(8): 131−140.

    Tian Hongzhen, Liu Qinping, Goes J I, et al. Temporal and spatial changes in chlorophyll a concentrations in the Bohai Sea in the past two decades[J]. Haiyang Xuebao, 2019, 41(8): 131−140.
    [8]
    Garrison T. Oceanography: An Invitation to Marine Science[M]. 6th ed. Belmont: Thomson Brooks/Cole, 2007.
    [9]
    Thomalla S J, Fauchereau N, Swart S, et al. Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean[J]. Biogeosciences, 2011, 8(10): 2849−2866. doi: 10.5194/bg-8-2849-2011
    [10]
    Corbière A, Metzl N, Reverdin G, et al. Interannual and decadal variability of the oceanic carbon sink in the North Atlantic subpolar gyre[J]. Tellus B: Chemical and Physical Meteorology, 2007, 59(2): 168−178. doi: 10.1111/j.1600-0889.2006.00232.x
    [11]
    Grantham B A, Chan F, Nielsen K J, et al. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the Northeast Pacific[J]. Nature, 2004, 429(6993): 749−754. doi: 10.1038/nature02605
    [12]
    Cermeño P, Dutkiewicz S, Harris R P, et al. The role of nutricline depth in regulating the ocean carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(51): 20344−20349.
    [13]
    Regaudie-de-Gioux A, Duarte C M. Temperature dependence of planktonic metabolism in the ocean[J]. Global Biogeochemical Cycles, 2012, 26(1): GB1015, doi: 10.1029/2010GB003907
    [14]
    Thomas M K, Kremer C T, Klausmeier C A, et al. A global pattern of thermal adaptation in marine phytoplankton[J]. Science, 2012, 338(6110): 1085−1088. doi: 10.1126/science.1224836
    [15]
    Raymont J E G. Plankton and Productivity in the Oceans[M]. 2nd ed. Oxford: Pergamon Press, 1983.
    [16]
    Platt T, Sathyendranath S. Ecological indicators for the pelagic zone of the ocean from remote sensing[J]. Remote Sensing of Environment, 2008, 112(8): 3426−3436. doi: 10.1016/j.rse.2007.10.016
    [17]
    Friedland K D, Mouw C B, Asch R G, et al. Phenology and time series trends of the dominant seasonal phytoplankton bloom across global scales[J]. Global Ecology and Biogeography, 2018, 27(5): 551−569, doi: 10.1111/geb.12717
    [18]
    Henson S A, Dunne J P, Sarmiento J L. Decadal variability in North Atlantic phytoplankton blooms[J]. Journal of Geophysical Research: Oceans, 2009, 114(C4): C04013, doi: 10.1029/2008JC005139
    [19]
    Yamaguchi R, Rodgers K B, Timmermann A, et al. Trophic level decoupling drives future changes in phytoplankton bloom phenology[J]. Nature Climate Change, 2022, 12(5): 469−476. doi: 10.1038/s41558-022-01353-1
    [20]
    He Xianqiang, Bai Yan, Pan D L, et al. Satellite views of the seasonal and interannual variability of phytoplankton blooms in the eastern China seas over the past 14 yr (1998-2011)[J]. Biogeosciences, 2013, 10(1): 4721−4739.
    [21]
    Racault M F, Le Quéré C, Buitenhuis E, et al. Phytoplankton phenology in the global ocean[J]. Ecological Indicators, 2012, 14(1): 152−163. (查阅网上资料, 本条文献与第2条文献重复, 请确认

    Racault M F, Le Quéré C, Buitenhuis E, et al. Phytoplankton phenology in the global ocean[J]. Ecological Indicators, 2012, 14(1): 152−163. (查阅网上资料, 本条文献与第2条文献重复, 请确认)
    [22]
    Sapiano M R P, Brown C W, Schollaert Uz S, et al. Establishing a global climatology of marine phytoplankton phenological characteristics[J]. Journal of Geophysical Research: Oceans, 2012, 117(C8): C08026, doi: 10.1029/2012JC007958
    [23]
    Lv Ting, Liu Dongyan, Zhou Peng, et al. The coastal front modulates the timing and magnitude of spring phytoplankton bloom in the Yellow Sea[J]. Water Research, 2022, 220: 118669. doi: 10.1016/j.watres.2022.118669
    [24]
    Henson S A, Robinson I, Allen J T, et al. Effect of meteorological conditions on interannual variability in timing and magnitude of the spring bloom in the Irminger Basin, North Atlantic[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(10): 1601−1615. doi: 10.1016/j.dsr.2006.07.009
    [25]
    Racault M F, Sathyendranath S, Menon N, et al. Phenological responses to ENSO in the global oceans[J]. Surveys in Geophysics, 2017, 38(1): 277−293. doi: 10.1007/s10712-016-9391-1
    [26]
    Alvera-Azcárate A, Barth A, Rixen M, et al. Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature[J]. Ocean Modelling, 2005, 9(4): 325−346. doi: 10.1016/j.ocemod.2004.08.001
    [27]
    高心雨, 王天浩, 苏华, 等. 南海两个代表性海区藻华事件特征的比较研究[J]. 海洋学报, 2023, 45(5): 90−106.

    Gao Xinyu, Wang Tianhao, Su Hua, et al. Comparative study on the characteristics of marine bloom events in two representative areas of the South China Sea[J]. Haiyang Xuebao, 2023, 45(5): 90−106.
    [28]
    Feng Jianfeng, Durant J M, Stige L C, et al. Contrasting correlation patterns between environmental factors and chlorophyll levels in the global ocean[J]. Global Biogeochemical Cycles, 2015, 29(12): 2095−2107. doi: 10.1002/2015GB005216
    [29]
    Marinov I, Doney S C, Lima I D. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light[J]. Biogeosciences, 2010, 7(12): 3941−3959. doi: 10.5194/bg-7-3941-2010
    [30]
    Behrenfeld M J, O’Malley R T, Siegel D A, et al. Climate-driven trends in contemporary ocean productivity[J]. Nature, 2006, 444(7120): 752−755. doi: 10.1038/nature05317
    [31]
    Feng Jianfeng, Stige L C, Hessen D O, et al. A threshold sea-surface temperature at 14℃ for phytoplankton nonlinear responses to ocean warming[J]. Global Biogeochemical Cycles, 2021, 35(5): e2020GB006808. doi: 10.1029/2020GB006808
    [32]
    Falkowski P G, Oliver M J. Mix and match: how climate selects phytoplankton[J]. Nature Reviews Microbiology, 2007, 5(10): 813−819. doi: 10.1038/nrmicro1751
    [33]
    Marañón E, Cermeño P, Latasa M, et al. Temperature, resources, and phytoplankton size structure in the ocean[J]. Limnology and Oceanography, 2012, 57(5): 1266−1278. doi: 10.4319/lo.2012.57.5.1266
    [34]
    Rubio F C, Camacho F G, Sevilla J M F, et al. A mechanistic model of photosynthesis in microalgae[J]. Biotechnology and Bioengineering, 2003, 81(4): 459−473. doi: 10.1002/bit.10492
    [35]
    Gregg W W, Casey N W, McClain C R. Recent trends in global ocean chlorophyll[J]. Geophysical Research Letters, 2005, 32(3): L03606, doi: 10.1029/2004GL021808
    [36]
    Kahru M, Gille S T, Murtugudde R, et al. Global correlations between winds and ocean chlorophyll[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12040, doi: 10.1029/2010JC006500
    [37]
    Barton A D, Lozier M S, Williams R G. Physical controls of variability in North Atlantic phytoplankton communities[J]. Limnology and Oceanography, 2015, 60(1): 181−197. doi: 10.1002/lno.10011
    [38]
    Sverdrup H U. On conditions for the vernal blooming of phytoplankton[J]. ICES Journal of Marine Science, 1953, 18(3): 287−295. doi: 10.1093/icesjms/18.3.287
    [39]
    Cabré A, Marinov I, Leung S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models[J]. Climate Dynamics, 2015, 45(5/6): 1253−1280.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (115) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return