Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Chen Tao,Li Zheng,Lu Jikun, et al. Preliminary study on connectivity of organism communities in artificial and natural habitats[J]. Haiyang Xuebao,2025, 47(x):1–13
Citation: Chen Tao,Li Zheng,Lu Jikun, et al. Preliminary study on connectivity of organism communities in artificial and natural habitats[J]. Haiyang Xuebao,2025, 47(x):1–13

Preliminary study on connectivity of organism communities in artificial and natural habitats

  • Received Date: 2024-05-30
  • Rev Recd Date: 2024-12-12
  • Available Online: 2025-01-08
  • To better understand the community patterns and their interconnections between different habitats in coastal areas, it is essential to explore the potential factors influencing species distribution and ecological connectivity between artificial and natural habitats. This study conducted a comprehensive survey of fish and invertebrate communities across four typical habitats in Haizhou Bay, Jiangsu Province: artificial reef area (ARA), nori culture area (NCA), oyster culture area (OCA), and natural area (NA). The results showed significant differences in species abundance among the four habitats (P<0.05), with some important species occurring across multiple habitats, and some endemic species restricted to a single habitat. The biomass of Oratosquilla oratoria in ARA was significantly higher compared to other habitats, and the body length of Chaeturichthys stigmatias in ARA, NCA, and OCA was significantly greater than in NA (P<0.05), which was strongly associated with the distribution of prey organisms. Differences in body length distributions of fish with different life habits indicate that species migration behavior plays an important role in species distribution and habitat connectivity. Migratory fish species, such as Larimichthys polyactis and Sardinella zunasi, exhibited significantly greater body lengths in artificial habitats compared to natural habitats (P<0.05). Resident fish species, such as Chaeturichthys stigmatias, exhibited significantly larger body lengths in OCA compared to ARA and NCA (P<0.05), while Cynoglossus joyneri exhibited a significantly greater body length in NCA than in ARA and OCA (P<0.05). This study demonstrates that artificial habitats, by enhancing habitat complexity, provide favorable environmental conditions for the restoration of marine biological resources and the development of individuals. The distribution of prey organisms and species migration characteristics are likely associated with connectivity between different habitats.
  • loading
  • [1]
    Reis-Filho J A, Schmid K, Harvey E S, et al. Coastal fish assemblages reflect marine habitat connectivity and ontogenetic shifts in an estuary-bay-continental shelf gradient[J]. Marine Environmental Research, 2019, 148: 57−66. doi: 10.1016/j.marenvres.2019.05.004
    [2]
    Xu Peng, Jiao Mengyu, Li Hanying, et al. Effects of artificial reef and fishing moratorium on trophic structure of biological community in the Pearl River Estuary marine ranch based on stable isotopes[J]. Marine Environmental Research, 2023, 190: 106066. doi: 10.1016/j.marenvres.2023.106066
    [3]
    Komyakova V, Chamberlain D, Jones G P, et al. Assessing the performance of artificial reefs as substitute habitat for temperate reef fishes: implications for reef design and placement[J]. Science of the Total Environment, 2019, 668: 139−152. doi: 10.1016/j.scitotenv.2019.02.357
    [4]
    McLean M, Roseman E F, Pritt J J, et al. Artificial reefs and reef restoration in the Laurentian Great Lakes[J]. Journal of Great Lakes Research, 2015, 41(1): 1−8. doi: 10.1016/j.jglr.2014.11.021
    [5]
    Richardson M A, Zhang Ya, Connolly R M, et al. Some like it hot: the ecology, ecosystem benefits and restoration potential of oyster reefs in tropical waters[J]. Frontiers in Marine Science, 2022, 9: 873768. doi: 10.3389/fmars.2022.873768
    [6]
    Sanz-Lazaro C, Sanchez-Jerez P. Regional integrated multi-trophic aquaculture (RIMTA): spatially separated, ecologically linked[J]. Journal of Environmental Management, 2020, 271: 110921. doi: 10.1016/j.jenvman.2020.110921
    [7]
    Gillanders B M, Able K W, Brown J A, et al. Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries[J]. Marine Ecology Progress Series, 2003, 247: 281−295. doi: 10.3354/meps247281
    [8]
    杨红生. 我国海洋牧场建设回顾与展望[J]. 水产学报, 2016, 40(7): 1133−1140.

    Yang Hongsheng. Construction of marine ranching in China: reviews and prospects[J]. Journal of Fisheries of China, 2016, 40(7): 1133−1140.
    [9]
    Gutiérrez J L, Jones C G, Strayer D L, et al. Mollusks as ecosystem engineers: the role of shell production in aquatic habitats[J]. Oikos, 2003, 101(1): 79−90. doi: 10.1034/j.1600-0706.2003.12322.x
    [10]
    Quan Weimin, Fan Ruiliang, Wang Yunlong, et al. Long-term oyster recruitment and growth are not influenced by substrate type in China: implications for sustainable oyster reef restoration[J]. Journal of Shellfish Research, 2017, 36(1): 79−86. doi: 10.2983/036.036.0110
    [11]
    Vásquez J A, Zuñiga S, Tala F, et al. Economic valuation of kelp forests in northern Chile: values of goods and services of the ecosystem[J]. Journal of Applied Phycology, 2014, 26(2): 1081−1088. doi: 10.1007/s10811-013-0173-6
    [12]
    Skjermo J, Aasen I M, Arff J, et al. A new Norwegian bioeconomy based on cultivation and processing of seaweeds: opportunities and R&D needs[R]. SINTEF Fisheries and Aquaculture, 2014. (查阅网上资料, 未找到本条文献出版地, 请确认)
    [13]
    Whitmarsh D, Santos M N, Ramos J, et al. Marine habitat modification through artificial reefs off the Algarve (southern Portugal): an economic analysis of the fisheries and the prospects for management[J]. Ocean & Coastal Management, 2008, 51(6): 463−468.
    [14]
    Walker S J, Schlacher T A. Limited habitat and conservation value of a young artificial reef[J]. Biodiversity and Conservation, 2014, 23(2): 433−447. doi: 10.1007/s10531-013-0611-4
    [15]
    Tessier A, Francour P, Charbonnel E, et al. Assessment of French artificial reefs: due to limitations of research, trends may be misleading[J]. Hydrobiologia, 2015, 753(1): 1−29. doi: 10.1007/s10750-015-2213-5
    [16]
    Folpp H R, Schilling H T, Clark G F, et al. Artificial reefs increase fish abundance in habitat-limited estuaries[J]. Journal of Applied Ecology, 2020, 57(9): 1752−1761. doi: 10.1111/1365-2664.13666
    [17]
    Clark S, Edwards A J. An evaluation of artificial reef structures as tools for marine habitat rehabilitation in the Maldives[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 1999, 9(1): 5−21. doi: 10.1002/(SICI)1099-0755(199901/02)9:1<5::AID-AQC330>3.0.CO;2-U
    [18]
    Sherman R L, Gilliam D S, Spieler R E. Artificial reef design: void space, complexity, and attractants[J]. ICES Journal of Marine Science, 2002, 59(S1): S196−S200.
    [19]
    张秀梅, 纪棋严, 胡成业, 等. 海洋牧场生态系统稳定性及其对干扰的响应——研究现状、问题及建议[J]. 水产学报, 2023, 47(11): 119509.

    Zhang Xiumei, Ji Qiyan, Hu Chengye, et al. Ecosystem stability of marine ranching and its response to disturbance: research status, issues, and suggestions[J]. Journal of Fisheries of China, 2023, 47(11): 119509.
    [20]
    Keller K, Smith J A, Lowry M B, et al. Multispecies presence and connectivity around a designed artificial reef[J]. Marine and Freshwater Research, 2017, 68(8): 1489−1500. doi: 10.1071/MF16127
    [21]
    Reeds K A, Smith J A, Suthers I M, et al. An ecological halo surrounding a large offshore artificial reef: sediments, infauna, and fish foraging[J]. Marine Environmental Research, 2018, 141: 30−38. doi: 10.1016/j.marenvres.2018.07.011
    [22]
    Olds A D, Connolly R M, Pitt K A, et al. Quantifying the conservation value of seascape connectivity: a global synthesis[J]. Global Ecology and Biogeography, 2016, 25(1): 3−15. doi: 10.1111/geb.12388
    [23]
    Liao Jinbao, Bearup D, Blasius B. Food web persistence in fragmented landscapes[J]. Proceedings of the Royal Society B: Biological Sciences, 2017, 284(1859): 20170350. doi: 10.1098/rspb.2017.0350
    [24]
    Tang Fenghua, Shen Xinqiang, Wang Yunlong. Dynamics of fisheries resources near Haizhou Bay waters[J]. Fisheries Science, 2011, 30(6): 335−341. (查阅网上资料, 本条文献为中文文献, 请确认)
    [25]
    罗文强, 赵刚, 张彦彦, 等. 海州湾海洋牧场人工鱼礁区建设前后海洋环境变化分析[J]. 海洋湖沼通报, 2021(1): 33−40.

    Luo Wenqiang, Zhao Gang, Zhang Yanyan, et al. A comparative analysis on marine environments of an artificial reef area in marine pasture, Haizhou Bay, before and after construction[J]. Transactions of Oceanology and Limnology, 2021(1): 33−40.
    [26]
    Luo Feng, Li Ruijie. 3D water environment simulation for north Jiangsu offshore sea based on EFDC[J]. Journal of Water Resource and Protection, 2009, 1(1): 41−47. doi: 10.4236/jwarp.2009.11007
    [27]
    Xie Fei, Pang Yong, Song Zhiyao. Three-dimensional numerical simulation of tidal current in offshore area of Haizhou Bay[J]. Journal of Hohai University (Natural Sciences), 2007, 35(6): 718−721. (查阅网上资料, 本条文献为中文文献, 请确认)
    [28]
    章守宇, 张焕君, 焦俊鹏, 等. 海州湾人工鱼礁海域生态环境的变化[J]. 水产学报, 2006, 30(4): 475−480.

    Zhang Shouyu, Zhang Huanjun, Jiao Junpeng, et al. Change of ecological environment of artificial reef waters in Haizhou Bay[J]. Journal of Fisheries of China, 2006, 30(4): 475−480.
    [29]
    Zhang Xiuying, Zhong Taiyang, Huang Xianjin, et al. Values of marine ecosystem services in Haizhou Bay[J]. Acta Ecologica Sinica, 2013, 33(2): 640−649. (查阅网上资料, 本条文献为中文文献, 请确认)
    [30]
    吴立珍, 吴卫强, 陆伟, 等. 海州湾生态环境修复的探索实践与展望——江苏省海洋牧场示范区建设[J]. 中国水产, 2012(6): 35−37.

    Wu Lizhen, Wu Weiqiang, Lu Wei, et al. Exploration, practice, and prospects of ecological environment restoration in Haizhou Bay: construction of the marine ranching demonstration zone in Jiangsu Province[J]. China Fisheries, 2012(6): 35−37. (查阅网上资料, 未找到本条文献英文翻译, 请确认)
    [31]
    高宇航, 陈曦, 孟顺龙, 等. 人工鱼礁建设研究进展及其作用机理[J]. 中国农学通报, 2023, 39(23): 138−144. doi: 10.11924/j.issn.1000-6850.casb2023-0246

    Gao Yuhang, Chen Xi, Meng Shunlong, et al. Research progress of artificial reef construction and its mechanism[J]. Chinese Agricultural Science Bulletin, 2023, 39(23): 138−144. doi: 10.11924/j.issn.1000-6850.casb2023-0246
    [32]
    闫令东. 筏式养殖夹苗密度对海带生长的影响——以荣成爱莲湾海带养殖为例[D]. 烟台: 烟台大学, 2021.

    Yan Lingdong. Effects of clamping density on the growth of Saccharina japonica in raft culture: a case study in Ailian Bay[D]. Yantai: Yantai University, 2021.
    [33]
    杨心愿. 祥云湾海洋牧场人工牡蛎礁群落特征及其生态效应[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2019.

    Yang Xinyuan. The community characteristics and ecological functions of artificial oyster reef at Xiangyun Bay marine ranching[D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2019.
    [34]
    Pinkas L, Oliphant M S, Iverson I L K. Food habits of albacore, bluefin tuna, and bonito in California waters[J]. Fishery Bulletin, 1971, 152: 1−105.
    [35]
    余宏昌, 毕宝帅, 唐文乔, 等. 上海苏州河治理中鱼类多样性及群落结构变化[J]. 生物多样性, 2021, 29(1): 32−42. doi: 10.17520/biods.2020067

    Yu Hongchang, Bi Baoshuai, Tang Wenqiao, et al. Changes in fish diversity and assemblage during comprehensive restoration of the Suzhou River in Shanghai[J]. Biodiversity Science, 2021, 29(1): 32−42. doi: 10.17520/biods.2020067
    [36]
    Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379−423. doi: 10.1002/j.1538-7305.1948.tb01338.x
    [37]
    Pielou E C. An Introduction to Mathematical Ecology[M]. New York: Wiley-Interscience, 1969.
    [38]
    Margalef R. Information theory in ecology[J]. General Systems, 1958, 3: 36−71.
    [39]
    黄欣. 南流江河口红树林潮沟鱼类群落时空分布格局及其与环境因子的关系[D]. 桂林: 桂林理工大学, 2020.

    Huang Xin. Temporal and spatial distribution patterns of fish assemblages from mangrove creek in the Nanliujiang River Estuary and its relationship with environmental factors[D]. Guilin: Guilin University of Technology, 2020.
    [40]
    Clarke K R, Gorley R N. Getting Started with PRIMER v7[M]. PRIMER-E Ltd: Plymouth, Plymouth Marine Laboratory, 2015. (查阅网上资料, 不确定本条文献出版信息, 请确认)
    [41]
    Heck Jr K L, Hays G, Orth R J. Critical evaluation of the nursery role hypothesis for Seagrass meadows[J]. Marine Ecology Progress Series, 2003, 253: 123−136. doi: 10.3354/meps253123
    [42]
    Unsworth R K F, Garrard S L, De León P S, et al. Structuring of Indo-Pacific fish assemblages along the mangrove–seagrass continuum[J]. Aquatic Biology, 2009, 5(1): 85−95.
    [43]
    Berkström C, Lindborg R, Thyresson M, et al. Assessing connectivity in a tropical embayment: fish migrations and seascape ecology[J]. Biological Conservation, 2013, 166: 43−53. doi: 10.1016/j.biocon.2013.06.013
    [44]
    Pihl L, Wennhage H. Structure and diversity of fish assemblages on rocky and soft bottom shores on the Swedish west coast[J]. Journal of Fish Biology, 2002, 61(sA): 148−166. doi: 10.1111/j.1095-8649.2002.tb01768.x
    [45]
    Fu Xiaoming, Tang Jianye, Wu Weiqiang, et al. Evaluation of ecological restoration performance in Haizhou Bay, Lianyungang[J]. Journal of Dalian Ocean University, 2017, 32(1): 93−98. (查阅网上资料, 本条文献为中文文献, 请确认)
    [46]
    张泽华. 浅海筏式海带养殖活动对水动力及沉积环境影响研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2016.

    Zhang Zehua. Effects of suspended kelp Laminaria japonica cultivation on hydrodynamic conditions and sedimentary environments[D]. Qingdao: Institute of Oceanography, Chinese Academy of Sciences, 2016.
    [47]
    侯润. 祥云湾海洋牧场牡蛎礁构建效果评估[D]. 保定: 河北农业大学, 2022.

    Hou Run. Effect evaluation of oyster reef construction in Xiangyun Bay Marine ranching[D]. Baoding: Hebei Agricultural University, 2022.
    [48]
    董双林, 董云伟, 黄六一, 等. 迈向远海的中国水产养殖: 机遇、挑战和发展策略[J]. 水产学报, 2023, 47(3): 1−11.

    Dong Shuanglin, Dong Yunwei, Huang Liuyi, et al. Toward offshore aquaculture in China: opportunities, challenges and development strategies[J]. Journal of Fisheries of China, 2023, 47(3): 1−11.
    [49]
    Abecasis D, Bentes L, Lino P G, et al. Residency, movements and habitat use of adult white seabream (Diplodus sargus) between natural and artificial reefs[J]. Estuarine, Coastal and Shelf Science, 2013, 118: 80−85. doi: 10.1016/j.ecss.2012.12.014
    [50]
    Bohnsack J A. Are high densities of fishes at artificial reefs the result of habitat limitation or behavioral preference?[J]. Bulletin of Marine Science, 1989, 44(2): 631−645.
    [51]
    汪振华, 章守宇, 王凯, 等. 三横山人工鱼礁区鱼类和大型无脊椎动物诱集效果初探[J]. 水产学报, 2010, 34(5): 751−759. doi: 10.3724/SP.J.1231.2010.06712

    Wang Zhenhua, Zhang Shouyu, Wang Kai, et al. A preliminary study on fish and macroinvertebrate enhancement in artificial reef area around Sanheng Isle, Shengsi, China[J]. Journal of Fisheries of China, 2010, 34(5): 751−759. doi: 10.3724/SP.J.1231.2010.06712
    [52]
    张荣良. 烟台近岸人工鱼礁与自然岩礁食物网结构与功能对比研究[D]. 中国科学院大学(中国科学院烟台海岸带研究所), 2021.

    Zhang Rongliang. The comparative study of the food web structure and function between the artificial and natural reefs in the nearshore of Yantai[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2021.
    [53]
    Ammar M S A. Coral reef restoration and artificial reef management, future and economic[J]. The Open Environmental Engineering Journal, 2009, 2(1): 37−49. doi: 10.2174/1874829500902010037
    [54]
    Lowry M B, Glasby T M, Boys C A, et al. Response of fish communities to the deployment of estuarine artificial reefs for fisheries enhancement[J]. Fisheries Management and Ecology, 2014, 21(1): 42−56. doi: 10.1111/fme.12048
    [55]
    徐俊伟, 张波, 张崇良, 等. 基于线性混合模型研究海州湾六丝钝尾虾虎鱼摄食生态[J]. 应用生态学报, 2022, 33(9): 2563−2571.

    Xu Junwei, Zhang Bo, Zhang Chongliang, et al. Feeding ecology of Amblychaeturichthys hexanema in Haizhou Bay based on linear mixed model[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2563−2571.
    [56]
    秦玉雪, 陈雷, 尹增强, 等. 基于碳、氮稳定同位素的黄海北部口虾蛄食性分析[J]. 水产学杂志, 2023, 36(1): 59−64. doi: 10.3969/j.issn.1005-3832.2023.01.009

    Qin Yuxue, Chen Lei, Yin Zengqiang, et al. Feeding habits of mantis shrimp Oratosqilla oratoria in northern Yellow Sea based on carbon and nitrogen stable isotope analysis[J]. Chinese Journal of Fisheries, 2023, 36(1): 59−64. doi: 10.3969/j.issn.1005-3832.2023.01.009
    [57]
    许莉莉, 薛莹, 焦燕, 等. 海州湾及邻近海域口虾蛄群体结构及资源分布特征[J]. 中国海洋大学学报, 2017, 47(4): 28−36.

    Xu Lili, Xue Ying, Jiao Yan, et al. Population structure and spatial distribution of Oratosquilla oratoria in Haizhou Bay and adjacent waters[J]. Periodical of Ocean University of China, 2017, 47(4): 28−36.
    [58]
    Baeck G W, Park J M, Hashimoto H. Feeding ecology of three tonguefishes, genus Cynoglossus (Cynoglossidae) in the Seto Inland Sea, Japan[J]. Animal Cells and Systems, 2011, 15(4): 325−336. doi: 10.1080/19768354.2011.611173
    [59]
    王斌, 孙鹏, 叶振江, 等. 山东近海枪乌贼类资源丰度的时空变动及其与环境因子的关系[J]. 中国海洋大学学报, 2020, 50(6): 50−60.

    Wang Bin, Sun Peng, Ye Zhenjiang, et al. Spatial-temporal variations of Loligo squids abundances in Shandong coastal waters and associating environmental factors[J]. Periodical of Ocean University of China, 2020, 50(6): 50−60.
    [60]
    林龙山, 程家骅, 姜亚洲, 等. 黄海南部和东海小黄鱼(Larimichthys polyactis)产卵场分布及其环境特征[J]. 生态学报, 2008, 28(8): 3485−3494. doi: 10.3321/j.issn:1000-0933.2008.08.001

    Lin Longshan, Cheng Jiahua, Jiang Yazhou, et al. Spatial distribution and environmental characteristics of the spawning grounds of small yellow croaker in the southern Yellow Sea and the East China Sea[J]. Acta Ecologica Sinica, 2008, 28(8): 3485−3494. doi: 10.3321/j.issn:1000-0933.2008.08.001
    [61]
    杨天燕. 青鳞小沙丁鱼(Sardinella zunasi)种群形态学和遗传学研究[D]. 青岛: 中国海洋大学, 2008.

    Yang Tianyan. Study on morphological and genetic comparison of Sardinella zunasi populations[D]. Qingdao: Ocean University of China, 2008.
    [62]
    Liu Xiao, Zhang Chongliang, Ren Yiping, et al. Spatiotemporal variation in the distribution and abundance of Chaeturichthys stigmatias in the Yellow River estuary and adjacent waters[J]. Journal of Fishery Sciences of China, 2015, 22(4): 791−798. (查阅网上资料, 本条文献为中文, 请确认)
    [63]
    Minami T. The early life history of a tongue fish, Cynoglossus joyneri[J]. Nippon Suisan Gakkaishi, 1983, 49(5): 719−724. doi: 10.2331/suisan.49.719
    [64]
    张云雷, 薛莹, 于华明, 等. 海州湾春季皮氏叫姑鱼栖息地适宜性研究[J]. 海洋学报, 2018, 40(6): 83−91. doi: 10.3969/j.issn.0253-4193.2018.06.008

    Zhang Yunlei, Xue Ying, Yu Huaming, et al. Study on the habitat suitability of Johnius belangerii during spring in the Haizhou Bay, China[J]. Haiyang Xuebao, 2018, 40(6): 83−91. doi: 10.3969/j.issn.0253-4193.2018.06.008
    [65]
    Shervette V R, Gelwick F. Habitat-specific growth in juvenile pinfish[J]. Transactions of the American Fisheries Society, 2007, 136(2): 445−451. doi: 10.1577/T06-097.1
    [66]
    Arve J. Preliminary report on attracting fish by oyster-shell plantings in Chincoteague Bay, Maryland[J]. Chesapeake Science, 1960, 1(1): 58−65. doi: 10.2307/1350537
    [67]
    Maciel T R, Avigliano E, De Carvalho B M, et al. Population structure and habitat connectivity of Genidens genidens (Siluriformes) in tropical and subtropical coasts from Southwestern Atlantic[J]. Estuarine, Coastal and Shelf Science, 2020, 242: 106839. doi: 10.1016/j.ecss.2020.106839
    [68]
    Yamanaka H, Minamoto T. The use of environmental DNA of fishes as an efficient method of determining habitat connectivity[J]. Ecological Indicators, 2016, 62: 147−153. doi: 10.1016/j.ecolind.2015.11.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views (35) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return