Citation: | Zhang Jian,Song Houcheng,Liu Wenjun, et al. Lag effect of climate change on CPUE of Thunnus albacares and Katsuwonus pelamis in the western and central Pacific Ocean purse seine fishery: An LSTM-Based study[J]. Haiyang Xuebao,2024, 46(7):62–72 doi: 10.12284/hyxb2024080 |
[1] |
Houssard P, Lorrain A, Tremblay-Boyer L, et al. Trophic position increases with thermocline depth in yellowfin and bigeye tuna across the Western and Central Pacific Ocean[J]. Progress in Oceanography, 2017, 154: 49−63. doi: 10.1016/j.pocean.2017.04.008
|
[2] |
Erauskin-Extramiana M, Arrizabalaga H, Hobday A J, et al. Large-scale distribution of tuna species in a warming ocean[J]. Global Change Biology, 2019, 25(6): 2043−2060. doi: 10.1111/gcb.14630
|
[3] |
Artetxe-Arrate I, Fraile I, Marsac F, et al. A review of the fisheries, life history and stock structure of tropical tuna (skipjack Katsuwonus pelamis, yellowfin Thunnus albacares and bigeye Thunnus obesus) in the Indian Ocean[J]. Advances in Marine Biology, 2021, 88: 39−89.
|
[4] |
Nimit K, Masuluri N K, Berger A M, et al. Oceanographic preferences of yellowfin tuna (Thunnus albacares) in warm stratified oceans: a remote sensing approach[J]. International Journal of Remote Sensing, 2020, 41(15): 5785−5805. doi: 10.1080/01431161.2019.1707903
|
[5] |
Kim J, Na Hanna, Park Y G, et al. Potential predictability of skipjack tuna (Katsuwonus pelamis) catches in the Western Central Pacific[J]. Scientific Reports, 2020, 10(1): 3193. doi: 10.1038/s41598-020-59947-8
|
[6] |
Fao. The state of world fisheries and aquaculture 2022. Towards blue transformation[R]. Rome: Food and Agriculture Organization of the United Nations, 2022.
|
[7] |
Monllor-Hurtado A, Pennino M G, Sanchez-Lizaso J L. Shift in tuna catches due to ocean warming[J]. PLoS One, 2017, 12(6): e0178196. doi: 10.1371/journal.pone.0178196
|
[8] |
Murua H, Rodriguez-Marin E, Neilson J D, et al. Fast versus slow growing tuna species: age, growth, and implications for population dynamics and fisheries management[J]. Reviews in Fish Biology and Fisheries, 2017, 27(4): 733−773. doi: 10.1007/s11160-017-9474-1
|
[9] |
Wu Yanlun, Lan Kuowei, Tian Yongjun. Determining the effect of multiscale climate indices on the global yellowfin tuna (Thunnus albacares) population using a time series analysis[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2020, 175: 104808. doi: 10.1016/j.dsr2.2020.104808
|
[10] |
Zhou Weifeng, Hu Huijuan, Fan Wei, et al. Impact of abnormal climatic events on the CPUE of yellowfin tuna fishing in the central and western Pacific[J]. Sustainability, 2022, 14(3): 1217. doi: 10.3390/su14031217
|
[11] |
Fadhilah A, Leidonald R, Susetya I E, et al. Analysis of the relationship between the ENSO phenomenon, Net Primary Productivity and catches of yellowfin tuna in Sibolga Waters, Indonesia[J]. Biodiversitas Journal of Biological Diversity, 2022, 23(9): 4440−4447.
|
[12] |
Miller K A. Climate variability and tropical tuna: management challenges for highly migratory fish stocks[J]. Marine Policy, 2007, 31(1): 56−70. doi: 10.1016/j.marpol.2006.05.006
|
[13] |
Lehodey P. The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO[J]. Progress in Oceanography, 2001, 49(1/4): 439−468.
|
[14] |
Kim J, Na Hanna. Interannual variability of yellowfin tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus) catches in the southwestern Tropical Indian Ocean and its relationship to climate variability[J]. Frontiers in Marine Science, 2022, 9: 857405. doi: 10.3389/fmars.2022.857405
|
[15] |
Lehodey P, Bertrand A, Hobday A J, et al. ENSO impact on marine fisheries and ecosystems[M]//McPhaden M J, Santoso A, Cai Wenju. El Niño Southern Oscillation in a Changing Climate. Washington: American Geophysical Union, 2021: 429−451.
|
[16] |
Langley A, Briand K, Kirby D S, et al. Influence of oceanographic variability on recruitment of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66(9): 1462−1477. doi: 10.1139/F09-096
|
[17] |
Dueri S, Bopp L, Maury O. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution[J]. Global Change Biology, 2014, 20(3): 742−753. doi: 10.1111/gcb.12460
|
[18] |
Zainuddin M, Nelwan A, Farhum S A, et al. Characterizing potential fishing zone of Skipjack Tuna during the southeast monsoon in the Bone Bay-Flores Sea using remotely sensed oceanographic data[J]. International Journal of Geosciences, 2013, 4(1): 259−266. doi: 10.4236/ijg.2013.41A023
|
[19] |
Schaefer K M, Fuller D W, Block B A. Vertical movements and habitat utilization of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares), and bigeye (Thunnus obesus) tunas in the equatorial eastern Pacific Ocean, ascertained through archival tag data[M]//Nielsen J L, Arrizabalaga H, Fragoso N, et al. Tagging and Tracking of Marine Animals with Electronic Devices. Dordrecht: Springer, 2009: 121−144.
|
[20] |
Yen K W, Wang Guihua, Lu H J. Evaluating habitat suitability and relative abundance of skipjack (Katsuwonus pelamis) in the western and central Pacific during various El Niño events[J]. Ocean & Coastal Management, 2017, 139: 153−160.
|
[21] |
Bell J D, Senina I, Adams T, et al. Pathways to sustaining tuna-dependent Pacific Island economies during climate change[J]. Nature Sustainability, 2021, 4(10): 900−910. doi: 10.1038/s41893-021-00745-z
|
[22] |
Salazar J E, Benavides I F, Cabrera C V P, et al. Generalized additive models with delayed effects and spatial autocorrelation patterns to improve the spatiotemporal prediction of the skipjack (Katsuwonus pelamis) distribution in the Colombian Pacific Ocean[J]. Regional Studies in Marine Science, 2021, 45: 101829. doi: 10.1016/j.rsma.2021.101829
|
[23] |
Qiu Yongsong, Lin Zhaojin, Wang Yuezhong. Responses of fish production to fishing and climate variability in the northern South China Sea[J]. Progress in Oceanography, 2010, 85(3/4): 197−212.
|
[24] |
Lan Kuowei, Wu Yanlun, Chen Luchi, et al. Effects of climate change in marine ecosystems based on the spatiotemporal age structure of top predators: a case study of bigeye tuna in the Pacific Ocean[J]. Frontiers in Marine Science, 2021, 8: 614594. doi: 10.3389/fmars.2021.614594
|
[25] |
Brill R W, Dewar H, Graham J B. Basic concepts relevant to heat transfer in fishes, and their use in measuring the physiological thermoregulatory abilities of tunas[J]. Environmental Biology of Fishes, 1994, 40(2): 109−124. doi: 10.1007/BF00002538
|
[26] |
Ménard F, Marsac F, Bellier E, et al. Climatic oscillations and tuna catch rates in the Indian Ocean: a wavelet approach to time series analysis[J]. Fisheries Oceanography, 2007, 16(1): 95−104. doi: 10.1111/j.1365-2419.2006.00415.x
|
[27] |
Hou Xiangyun, Ma Shuyang, Tian Yongjun, et al. The effects of trans-basin climate variability on skipjack tuna in the northwest Pacific Ocean: causal and nonstationary[J]. Frontiers in Marine Science, 2022, 9: 895219. doi: 10.3389/fmars.2022.895219
|
[28] |
Lu H J, Lee K T, Lin H L, et al. Spatio-temporal distribution of yellowfin tuna Thunnus albacares and bigeye tuna Thunnus obesus in the Tropical Pacific Ocean in relation to large-scale temperature fluctuation during ENSO episodes[J]. Fisheries Science, 2001, 67(6): 1046−1052. doi: 10.1046/j.1444-2906.2001.00360.x
|
[29] |
Singh A A, Suzuki N, Sakuramoto K. Influence of climatic conditions on the time series fluctuation of yellowfin tuna Thunnus albacares in the south Pacific Ocean[J]. Open Journal of Marine Science, 2015, 5(3): 247−264. doi: 10.4236/ojms.2015.53020
|
[30] |
Domokos R. Influence of El Niño-Southern Oscillation on bigeye and yellowfin tuna longline catch per unit effort in the equatorial Pacific[J]. Fisheries Oceanography, 2023, 32(6): 527−540. doi: 10.1111/fog.12644
|
[31] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735−1780. doi: 10.1162/neco.1997.9.8.1735
|
[32] |
Jiao Yuanjie. Prediction of fish migration based on LSTM model[C]//2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). Shenyang: IEEE, 2021: 697−701.
|
[33] |
Cavieses Núñez R A, Ojeda Ruiz de la Peña M Á, Flores Irigollen A, et al. Deep learning models for the prediction of small-scale fisheries catches: finfish fishery in the region of “Bahía Magadalena-Almejas”[J]. ICES Journal of Marine Science, 2018, 75(6): 2088−2096. doi: 10.1093/icesjms/fsy065
|
[34] |
Xu Hui, Song Liming, Zhang Tianjiao, et al. Effects of different spatial resolutions on prediction accuracy of Thunnus alalunga fishing ground in waters near the Cook Islands Based on Long Short-Term Memory (LSTM) Neural Network Model[J]. Journal of Ocean University of China, 2023, 22(5): 1427−1438. doi: 10.1007/s11802-023-5525-5
|
[35] |
Gers F A, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451−2471. doi: 10.1162/089976600300015015
|
[36] |
Prasetyo Y, Nabilah F. Pattern analysis of El Nino and La Nina phenomenon based on sea surface temperature (SST) and rainfall intensity using oceanic Nino Index (ONI) in West Java Area[J]. IOP Conference Series: Earth and Environmental Science, 2017, 98: 012041. doi: 10.1088/1755-1315/98/1/012041
|
[37] |
Kiem A S, Verdon-Kidd D C. Climatic drivers of Victorian streamflow: is ENSO the dominant influence?[J]. Australasian Journal of Water Resources, 2009, 13(1): 17−29. doi: 10.1080/13241583.2009.11465357
|
[38] |
Longhurst A R. Ecological Geography of the Sea[M]. 2nd ed. Burlington: Academic Press, 2010.
|
[39] |
Le Borgne R, Allain V, Griffiths S P, et al. Vulnerability of open ocean food webs in the tropical Pacific to climate change[M]//Bell J D, Johnson J E, Hobday A J. Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change. New Caledonia: Secretariat of the Pacific Community, 2011: 189−250.
|
[40] |
Mazumder A N, Rashid H A, Mohsenin T. An energy-efficient low power LSTM processor for human activity monitoring[C]//2020 IEEE 33rd International System-on-Chip Conference (SOCC). Las Vegas: IEEE, 2020: 54−59.
|
[41] |
Singh A A, Sakuramoto K, Suzuki N. Impact of climatic factors on albacore tuna Thunnus alalunga in the south Pacific Ocean[J]. American Journal of Climate Change, 2015, 4(4): 295−312. doi: 10.4236/ajcc.2015.44024
|
[42] |
Hampton J, Fournier D A. A spatially disaggregated, length-based, age-structured population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean[J]. Marine and Freshwater Research, 2001, 52(7): 937−963. doi: 10.1071/MF01049
|
[43] |
Foster R G, Roenneberg T. Human responses to the geophysical daily, annual and lunar cycles[J]. Current Biology, 2008, 18(17): R784−R794. doi: 10.1016/j.cub.2008.07.003
|
[44] |
Hodson T O. Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not[J]. Geoscientific Model Development, 2022, 15(14): 5481−5487. doi: 10.5194/gmd-15-5481-2022
|
[45] |
Chai Tianfeng, Draxler R R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 2014, 7(3): 1247−1250. doi: 10.5194/gmd-7-1247-2014
|
[46] |
De Myttenaere A, Golden B, Le Grand B, et al. Mean absolute percentage error for regression models[J]. Neurocomputing, 2016, 192: 38−48. doi: 10.1016/j.neucom.2015.12.114
|
[47] |
Reglero P, Tittensor D P, Álvarez-Berastegui D, et al. Worldwide distributions of tuna larvae: revisiting hypotheses on environmental requirements for spawning habitats[J]. Marine Ecology Progress Series, 2014, 501: 207−224. doi: 10.3354/meps10666
|
[48] |
Leung S, Thompson L, McPhaden M J, et al. ENSO drives near-surface oxygen and vertical habitat variability in the tropical Pacific[J]. Environmental Research Letters, 2019, 14(6): 064020. doi: 10.1088/1748-9326/ab1c13
|
[49] |
Yen K W, Lu H J, Chang Yi, et al. Using remote-sensing data to detect habitat suitability for yellowfin tuna in the western and central Pacific Ocean[J]. International Journal of Remote Sensing, 2012, 33(23): 7507−7522. doi: 10.1080/01431161.2012.685973
|
[50] |
Lehodey P, Hampton J, Brill R W, et al. Vulnerability of oceanic fisheries in the tropical Pacific to climate change[M]//Bell J D, Johnson J E, Hobday A J. Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change. New Caledonia: Secretariat of the Pacific Community, 2011: 433−492.
|
[51] |
Peña-Torres J, Dresdner J, Vasquez F. El Niño and fishing location decisions: the Chilean straddling jack mackerel fishery[J]. Marine Resource Economics, 2017, 32(3): 249−275. doi: 10.1086/692073
|
[52] |
Moore B R, Bell J D, Evans K, et al. Defining the stock structures of key commercial tunas in the Pacific Ocean I: current knowledge and main uncertainties[J]. Fisheries Research, 2020, 230: 105525. doi: 10.1016/j.fishres.2020.105525
|
[53] |
Lehodey P, Chai F, Hampton J. Modelling climate-related variability of tuna populations from a coupled ocean-biogeochemical-populations dynamics model[J]. Fisheries Oceanography, 2003, 12(4/5): 483−494.
|
[54] |
Yen K W, Lu H J. Spatial-temporal variations in primary productivity and population dynamics of skipjack tuna Katsuwonus pelamis in the western and central Pacific Ocean[J]. Fisheries Science, 2016, 82(4): 563−571. doi: 10.1007/s12562-016-0992-x
|
[55] |
Shi Xiaofei, Zhang Jian, Wang Xiao, et al. Reproductive biology of yellowfin tuna (Thunnus albacares) in tropical western and central Pacific Ocean[J]. Fishes, 2022, 7(4): 162. doi: 10.3390/fishes7040162
|
[56] |
Ohashi S, Aoki Y, Tanaka F, et al. Reproductive traits of female skipjack tuna Katsuwonus pelamis in the western central Pacific Ocean (WCPO)[C]//15th Regular Session of the Scientific Committee. Pohnpei, Micronesia: WCPFC, 2019.
|
[57] |
Schaefer K M, Fuller D W, Block B A. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the northeastern Pacific Ocean, ascertained through archival tag data[J]. Marine Biology, 2007, 152(3): 503−525. doi: 10.1007/s00227-007-0689-x
|
[58] |
Ashida H. Spatial and temporal differences in the reproductive traits of skipjack tuna Katsuwonus pelamis between the subtropical and temperate western Pacific Ocean[J]. Fisheries Research, 2020, 221: 105352. doi: 10.1016/j.fishres.2019.105352
|
[59] |
Grande M, Murua H, Zudaire I, et al. Energy allocation strategy of skipjack tuna Katsuwonus pelamis during their reproductive cycle[J]. Journal of Fish Biology, 2016, 89(5): 2434−2448. doi: 10.1111/jfb.13125
|
[60] |
Zudaire I, Murua H, Grande M, et al. Variations in the diet and stable isotope ratios during the ovarian development of female yellowfin tuna (Thunnus albacares) in the Western Indian Ocean[J]. Marine Biology, 2015, 162(12): 2363−2377. doi: 10.1007/s00227-015-2763-0
|
[61] |
Chan H L. How climate change and climate variability affected trip distance of a commercial fishery[J]. PLoS Climate, 2023, 2(2): e0000143. doi: 10.1371/journal.pclm.0000143
|
[62] |
Kim E, Moon D, Kim S. Effects of climate-induced variation in the catch distribution and biological characteristics of skipjack tuna Katsuwonus pelamis in the western and central Pacific Ocean[J]. Korean Journal of Fisheries and Aquatic Sciences, 2015, 48(4): 489−497. doi: 10.5657/KFAS.2015.0489
|
[63] |
Bigelow K, Hampton J, Fournier D. Preliminary application of the MULTIFAN-CL model to skipjack tuna in the tropical WCPO[C]//13th Meeting of the Standing Committee on Tuna and Billfish. Noumea: SPC, 2000.
|
[64] |
Hoyle S D, Williams A J, Minte-Vera C V, et al. Approaches for estimating natural mortality in tuna stock assessments: application to global yellowfin tuna stocks[J]. Fisheries Research, 2023, 257: 106498. doi: 10.1016/j.fishres.2022.106498
|
[65] |
Matsumoto W M, Skillman R A, Dizon A E. Synopsis of Biological Data on Skipjack Tuna, Katsuwonus Pelamis[M]. Seattle: U. S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Services, 1984.
|
[66] |
Kaji T, Tanaka M, Oka M, et al. Growth and morphological development of laboratory-reared yellowfin tuna Thunnus albacares larvae and early juveniles, with special emphasis on the digestive system[J]. Fisheries Science, 1999, 65(5): 700−707. doi: 10.2331/fishsci.65.700
|
[67] |
Ashida H, Watanabe K, Tanabe T. Growth variability of juvenile skipjack tuna (Katsuwonus pelamis) in the western and central Pacific Ocean[J]. Environmental Biology of Fishes, 2018, 101(3): 429−439. doi: 10.1007/s10641-017-0708-9
|
[68] |
Sardenne F, Bodin N, Chassot E, et al. Trophic niches of sympatric tropical tuna in the western Indian Ocean inferred by stable isotopes and neutral fatty acids[J]. Progress in Oceanography, 2016, 146: 75−88. doi: 10.1016/j.pocean.2016.06.001
|
[69] |
Benavides I F, Romero-Leiton J P, Santacruz M, et al. Applying seasonal time series modeling to forecast marine fishery landings for six species in the Colombian Pacific Ocean[J]. Regional Studies in Marine Science, 2022, 56: 102716. doi: 10.1016/j.rsma.2022.102716
|
[70] |
LEE B, SUHARTONO S, LIM A, et al. Forecasting world tuna catches with ARIMA-spline and ARIMA-neural networks models[J]. Walailak Journal of Science and Technology, 2021, 18(17): 9726.
|
[71] |
Cavieses-Núñez R, Ojeda-Ruiz M A, Flores-Irigollen A, et al. Focused small-scale fisheries as complex systems using deep learning models[J]. Latin American Journal of Aquatic Research, 2021, 49(2): 342−353. doi: 10.3856/vol49-issue2-fulltext-2622
|
[72] |
Nagano K, Yamamura O. Predicting catch of Giant Pacific octopus Enteroctopus dofleini in the Tsugaru Strait using a machine learning approach[J]. Fisheries Research, 2023, 261: 106622. doi: 10.1016/j.fishres.2023.106622
|
[73] |
Siami-Namini S, Tavakoli N, Namin A S. A comparison of ARIMA and LSTM in forecasting time series[C]//2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). Orlando: IEEE, 2018: 1394−1401.
|
[74] |
Qian Fei, Chen Xianfu. Stock prediction based on LSTM under different stability[C]//2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). Chengdu: IEEE, 2019: 483−486.
|
[75] |
Zhao J, Huang F, Lv J, et al. Do RNN and LSTM have long memory?[C]// Daumé III H, Singh A. Proceedings of the 37th International Conference on Machine Learning. PMLR, 2020: 11365−11375.
|