Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Han Wantong,Xia Ruibin,Luo Yiyong, et al. Sources of local dense shelf water near the Cape Darnley fast ice in Prydz Bay, Antarctica[J]. Haiyang Xuebao,2023, 45(9):45–57 doi: 10.12284/hyxb2023116
Citation: Han Wantong,Xia Ruibin,Luo Yiyong, et al. Sources of local dense shelf water near the Cape Darnley fast ice in Prydz Bay, Antarctica[J]. Haiyang Xuebao,2023, 45(9):45–57 doi: 10.12284/hyxb2023116

Sources of local dense shelf water near the Cape Darnley fast ice in Prydz Bay, Antarctica

doi: 10.12284/hyxb2023116
  • Received Date: 2022-12-02
  • Rev Recd Date: 2023-04-20
  • Available Online: 2023-08-22
  • Publish Date: 2023-09-30
  • In this paper, we analyze the variation of local dense shelf water around the Cape Darnley fast ice by using a landfast ice dataset and in-situ observation data of Antarctic elephant seals. The results show that: firstly, there are significant seasonal variations of Cape Darnley fast ice, which has a vital impact on the formation of the Cape Darnley polynya and the local dense shelf water. Secondly, the interannual variation of Cape Darnley fast ice is minimal from 2000 to 2014, with no significant trend of increasing or decreasing. Thirdly, we identify two significant sources of local dense shelf water near the Cape Darnley fast ice area: (1) dense shelf water produced by the strong brine rejection process during the rapid generation of Cape Darnley fast ice from March to April; (2) Cape Darnley fast ice reaching its maximum extent and local brine rejection being reduced to a minimum in May. After the weakening of the inhibition of ice shelf water, the formation of dense shelf water in the upstream MacKenzie Bay polynya is enhanced and transported northwest to the vicinity of the Cape Darnley fast ice. In this study, we preliminarily demonstrates that, in addition to maintaining Cape Darnley polynya, Cape Darnley fast ice probably has an important influence on the generation of local dense shelf water, and points out an important water mass transport path. These would help improve the comprehension of ice-sea interaction near Cape Darnley and point out the need for more observations or modeling studies in this area.
  • loading
  • [1]
    Massom R A, Hill K L, Lytle V I, et al. Effects of regional fast-ice and iceberg distributions on the behaviour of the Mertz Glacier polynya, East Antarctica[J]. Annals of Glaciology, 2001, 33: 391−398. doi: 10.3189/172756401781818518
    [2]
    Cheng Bin, Vihma T, Zhang Zhanhai, et al. Snow and sea ice thermodynamics in the Arctic: model validation and sensitivity study against SHEBA data[J]. Chinese Journal of Polar Science, 2008, 19(2): 108−122.
    [3]
    Giles A B, Massom R A, Lytle V I. Fast-ice distribution in East Antarctica during 1997 and 1999 determined using RADARSAT data[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02S14.
    [4]
    Price D, Rack W, Langhorne P J, et al. The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice[J]. The Cryosphere, 2014, 8(3): 1031−1039. doi: 10.5194/tc-8-1031-2014
    [5]
    赵杰臣, 杨清华, 程斌, 等. 基于温度链浮标获取南极普里兹湾积雪和固定冰厚度的研究[J]. 海洋学报, 2017, 39(11): 115−127.

    Zhao Jiechen, Yang Qinghua, Cheng Bin, et al. Snow and land-fast sea ice thickness derived from thermistor chain buoy in the Prydz Bay, Antarctic[J]. Haiyang Xuebao, 2017, 39(11): 115−127.
    [6]
    Hunke E C, Lipscomb W H, Turner A K. Sea-ice models for climate study: retrospective and new directions[J]. Journal of Glaciology, 2010, 56(200): 1162−1172. doi: 10.3189/002214311796406095
    [7]
    Fraser A D, Massom R A, Michael K J. Generation of high-resolution East Antarctic landfast sea-ice maps from cloud-free MODIS satellite composite imagery[J]. Remote Sensing of Environment, 2010, 114(12): 2888−2896. doi: 10.1016/j.rse.2010.07.006
    [8]
    Nihashi S, Ohshima K I. Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: relationship and variability[J]. Journal of Climate, 2015, 28(9): 3650−3670. doi: 10.1175/JCLI-D-14-00369.1
    [9]
    Heil P, Allison I, Lytle V I. Seasonal and interannual variations of the oceanic heat flux under a landfast Antarctic sea ice cover[J]. Journal of Geophysical Research: Oceans, 1996, 101(C11): 25741−25752. doi: 10.1029/96JC01921
    [10]
    Mahoney A, Eicken H, Gaylord A G, et al. Alaska landfast sea ice: links with bathymetry and atmospheric circulation[J]. Journal of Geophysical Research: Oceans, 2007, 112(C2): C02001.
    [11]
    Murphy E J, Clarke A, Symon C, et al. Temporal variation in Antarctic sea-ice: analysis of a long term fast-ice record from the South Orkney Islands[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42(7): 1045−1062. doi: 10.1016/0967-0637(95)00057-D
    [12]
    Marshall J, Speer K. Closure of the meridional overturning circulation through Southern Ocean upwelling[J]. Nature Geoscience, 2012, 5(3): 171−180. doi: 10.1038/ngeo1391
    [13]
    Tamura T, Ohshima K I, Nihashi S. Mapping of sea ice production for Antarctic coastal polynyas[J]. Geophysical Research Letters, 2008, 35(7): L07606.
    [14]
    Young N W, Turner D, Hyland G, et al. Near-coastal iceberg distributions in East Antarctica, 50°−145°E[J]. Annals of Glaciology, 1998, 27: 68−74. doi: 10.3189/1998AoG27-1-68-74
    [15]
    Enomoto H, Nishio F, Warashina H, et al. Satellite observation of melting and break-up of fast ice in Lutzow-Holm Bay, East Antarctica[J]. Polar Meteorology and Glaciology, 2002, 16: 1−14.
    [16]
    Heil P. Atmospheric conditions and fast ice at Davis, East Antarctica: a case study[J]. Journal of Geophysical Research: Oceans, 2006, 111(C5): C05009.
    [17]
    Kim S, Saenz B, Scanniello J, et al. Local climatology of fast ice in McMurdo Sound, Antarctica[J]. Antarctic Science, 2018, 30(2): 125−142. doi: 10.1017/S0954102017000578
    [18]
    Lei Ruibo, Li Zhijun, Cheng Bin, et al. Annual cycle of landfast sea ice in Prydz Bay, East Antarctica[J]. Journal of Geophysical Research: Oceans, 2010, 115(C2): C02006.
    [19]
    Ushio S. Factors affecting fast-ice break-up frequency in Lützow-Holm Bay, Antarctica[J]. Annals of Glaciology, 2006, 44: 177−182. doi: 10.3189/172756406781811835
    [20]
    Wongpan P, Hughes K G, Langhorne P J, et al. Brine convection, temperature fluctuations, and permeability in winter antarctic land-fast sea ice[J]. Journal of Geophysical Research: Oceans, 2018, 123(1): 216−230. doi: 10.1002/2017JC012999
    [21]
    雷瑞波, 李志军, 窦银科, 等. 南极中山站附近固定冰生消过程观测[J]. 水科学进展, 2010, 21(5): 708−712.

    Lei Ruibo, Li Zhijun, Dou Yinke, et al. Observations of the growth and decay processes of fast ice around Zhongshan Station in Antarctica[J]. Advances in Water Science, 2010, 21(5): 708−712.
    [22]
    雷瑞波, 李志军, 张占海, 等. 南极中山站附近海域固定冰的夏季变化[J]. 极地研究, 2007, 19(4): 275−284.

    Lei Ruibo, Li Zhijun, Zhang Zhanhai, et al. Summer fast-ice evolution off Zhongshan Station, Antarctica[J]. Chinese Journal of Polar Research, 2007, 19(4): 275−284.
    [23]
    窦银科, 常晓敏, 敦卓, 等. 电容感应式冰厚监测系统在南极海冰监测中的应用[J]. 数学的实践与认识, 2014, 44(4): 197−204. doi: 10.3969/j.issn.1000-0984.2014.04.031

    Dou Yinke, Chang Xiaomin, Dun Zhuo, et al. Monitoring and application of the system of capacitive sensing for ice thickness in the Antarctic sea ice[J]. Mathematics in Practice and Theory, 2014, 44(4): 197−204. doi: 10.3969/j.issn.1000-0984.2014.04.031
    [24]
    杨清华, 刘骥平, 孙启振, 等. 2010年春季南极固定冰反照率变化特征及其影响因子[J]. 地球物理学报, 2013, 56(7): 2177−2184. doi: 10.6038/cjg20130705

    Yang Qinghua, Liu Jiping, Sun Qizhen, et al. Surface albedo variation and its influencing factors over costal fast ice around Zhongshan Station, Antarctica in austral spring of 2010[J]. Chinese Journal of Geophysics, 2013, 56(7): 2177−2184. doi: 10.6038/cjg20130705
    [25]
    赵杰臣, 郝光华, 李杰, 等. 南极中山站海冰综合观测系统的建设[J]. 海洋预报, 2018, 35(5): 41−52. doi: 10.11737/j.issn.1003-0239.2018.05.006

    Zhao Jiechen, Hao Guanghua, Li Jie, et al. Construction of integrated sea ice observation system at Antarctic Zhongshan Station[J]. Marine Forecasts, 2018, 35(5): 41−52. doi: 10.11737/j.issn.1003-0239.2018.05.006
    [26]
    Li Xinqing, Shokr M, Hui Fengming, et al. The spatio-temporal patterns of landfast ice in Antarctica during 2006–2011 and 2016–2017 using high-resolution SAR imagery[J]. Remote Sensing of Environment, 2020, 242: 111736. doi: 10.1016/j.rse.2020.111736
    [27]
    Zhao Jiechen, Cheng Jingjing, Tian Zhongxiang, et al. Snow and ice thicknesses derived from Fast Ice Prediction System Version 2.0 (FIPS V2.0) in Prydz Bay, East Antarctica: comparison with in-situ observations[J]. Big Earth Data, 2022, 6(4): 492−503. doi: 10.1080/20964471.2021.1981196
    [28]
    Fraser A D, Massom R A, Michael K J, et al. East Antarctic landfast sea ice distribution and variability, 2000–08[J]. Journal of Climate, 2012, 25(4): 1137−1156. doi: 10.1175/JCLI-D-10-05032.1
    [29]
    Fraser A D, Ohshima K I, Nihashi S, et al. Landfast Sea Ice Extent Time-Series, from March 2000 to March 2014[EB/OL]. [2022−11−01]. http://doi.org/10.4225/15/58eedb8f99dbc
    [30]
    Fraser A D, Ohshima K I, Nihashi S, et al. Landfast ice controls on sea-ice production in the Cape Darnley Polynya: a case study[J]. Remote Sensing of Environment, 2019, 233: 111315. doi: 10.1016/j.rse.2019.111315
    [31]
    Petty A A, Feltham D L, Holland P R. Impact of atmospheric forcing on Antarctic continental shelf water masses[J]. Journal of Physical Oceanography, 2013, 43(5): 920−940. doi: 10.1175/JPO-D-12-0172.1
    [32]
    Silvano A, Rintoul S R, Peña-Molino B, et al. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water[J]. Science Advances, 2018, 4(4): eaap9467. doi: 10.1126/sciadv.aap9467
    [33]
    Ohshima K I, Fukamachi Y, Williams G D, et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya[J]. Nature Geoscience, 2013, 6(3): 235−240. doi: 10.1038/ngeo1738
    [34]
    Williams G D, Herraiz-Borreguero L, Roquet F, et al. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay[J]. Nature Communications, 2016, 7(1): 12577. doi: 10.1038/ncomms12577
    [35]
    Johnson G C. Quantifying Antarctic bottom water and North Atlantic deep water volumes[J]. Journal of Geophysical Research: Oceans, 2008, 113(C5): C05027.
    [36]
    Orsi A H, Johnson G C, Bullister J L. Circulation, mixing, and production of Antarctic Bottom Water[J]. Progress in Oceanography, 1999, 43(1): 55−109. doi: 10.1016/S0079-6611(99)00004-X
    [37]
    Portela E, Rintoul S R, Bestley S, et al. Seasonal transformation and spatial variability of water masses within MacKenzie polynya, Prydz Bay[J]. Journal of Geophysical Research: Oceans, 2021, 126(12): e2021JC017748.
    [38]
    Roquet F, Williams G, Hindell M, et al. A Southern Indian Ocean database of hydrographic profiles obtained with instrumented elephant seals[J]. Scientific Data, 2014, 1: 140028.
    [39]
    Hooker S K, Boyd I L. Salinity sensors on seals: use of marine predators to carry CTD data loggers[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2003, 50(7): 927−939. doi: 10.1016/S0967-0637(03)00055-4
    [40]
    Lake R A, Lewis E L. Salt rejection by sea ice during growth[J]. Journal of Geophysical Research, 1970, 75(3): 583−597. doi: 10.1029/JC075i003p00583
    [41]
    韩雨欣. 搁浅冰山对南极普里兹湾环流及海冰影响的数值[D]. 青岛: 中国海洋大学, 2022.

    Han Yuxin. Simulating the effects of grounding giant icebergs on circulation and sea ice in Prydz Bay using a coupled seaice-ocean numerical model[D]. Qingdao: Ocean University of China, 2022.
    [42]
    程瑶瑶, 史久新, 郑少军. 南极麦肯齐湾冰间湖的时空变化及主要影响因素分析[J]. 中国海洋大学学报, 2012, 42(7/8): 1−9.

    Cheng Yaoyao, Shi Jiuxin, Zheng Shaojun. Temporal and spatial variation of the Mackenzie Bay polynya, Antarctica and its main impact factors[J]. Periodical of Ocean University of China, 2012, 42(7/8): 1−9.
    [43]
    林丽娜, 陈红霞, 刘娜. 普里兹湾及邻近海域多航次水文特征比较分析[J]. 海洋科学进展, 2015, 33(4): 460−470. doi: 10.3969/j.issn.1671-6647.2015.04.004

    Lin Lina, Chen Hongxia, Liu Na. A comparative analysis on hydrographic features during several cruises in the region of Prydz Bay, Antarctic[J]. Advances in Marine Science, 2015, 33(4): 460−470. doi: 10.3969/j.issn.1671-6647.2015.04.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views (313) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return