Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Ma Xiaochuan, Luan Zhendong, Zhang Xin, Zheng Cuie, Yan Jun, Sun Dajun. Near-bottom topography measurement using ROV and its application in a deep-sea hydrothermal field in the Manus Basin[J]. Haiyang Xuebao, 2017, 39(3): 76-84.
Citation: Ma Xiaochuan, Luan Zhendong, Zhang Xin, Zheng Cuie, Yan Jun, Sun Dajun. Near-bottom topography measurement using ROV and its application in a deep-sea hydrothermal field in the Manus Basin[J]. Haiyang Xuebao, 2017, 39(3): 76-84.

Near-bottom topography measurement using ROV and its application in a deep-sea hydrothermal field in the Manus Basin

  • Received Date: 2016-06-08
  • It is necessary to deploy high-resolution topographic surveys in a typical small target in deep-sea areas (e. g. hydrothermal seep, ridge area) to support the future further studies, after the full-covered topography data acquisition of the large study area using a shipborne mutli-beam system. Here, we select PACMANUS hydrothermal area as target area in the Manus Basin and deploy a near-bottom full-covered survey to obtain topography data basing on "FAXIAN" ROV. Results show that Long Baseline provide a reliable high-precision positioning relying on the ship dynamic positioning system and a differential GPS. The resolution of seabed topography which is near-bottom measured by ROV is tens of times better than that obtained by an onboard multi-beam system. High-resolution terrain clearly shows the detailed characters of the terrain in the PACMANUS hydrothermal field, and some cones are corresponding to the locations of the discovered hydrothermal points and volcanic area. Further analysis show that hydrothermal points mainly developed on the steep slopes whose gradients exceed 30°, and the causes are still unknown and need a further study. It is a reliable mean for obtaining high-resolution topography data by deploying near-bottom measurements using ROV, which will promote the development of deep-sea scientific research.
  • loading
  • Heezen B C, Tharp M. World Ocean Floor Panorama[M]//Full Color, Painted by H. Ber Mercator Projection, Scale:1:23,230,300, 1168×1930 mm. New York, 1977.
    Becker J J, Sandwell D T, Smith W H F, et al. Global bathymetry and elevation data at 30 arc seconds resolution:SRTM30_PLUS[J]. Marine Geodesy, 2009, 32(4):355-371.
    Harris P T, Macmillan-Lawler M, Rupp J, et al. Geomorphology of the oceans[J]. Marine Geology, 2014, 352:4-24.
    Kwasnitschka T, Hansteen T H, Devey C W, et al. Doing fieldwork on the seafloor:Photogrammetric techniques to yield 3D visual models from ROV video[J]. Computers & Geosciences, 2013, 52:218-226.
    German C R, Lin J, Parson L M. Mid-Ocean Ridges:Hydrothermal Interactions Between the Lithosphere and Oceans[M]. Washington:American Geophysics Union, 2004:245-266.
    Dorschel B, Wheeler A, Huvenne V, et al. Cold-water coral mounds in an erosive environmental setting:TOBI side-scan sonar data and ROV video footage from the northwest Porcupine Bank, NE Atlantic[J]. Marine Geology, 2009, 264(3):218-229.
    Thal J, Tivey M, Yoerger D, et al. Geologic setting of PACManus hydrothermal area-high resolution mapping and in situ observations[J]. Marine Geology, 2014, 355:98-114.
    李家彪, 等. 多波束勘测原理技术与方法[M]. 北京:海洋出版社, 1999. Li Jiabiao, et al. Multibeam Sounding Principles Survey Technologies and Data Processing Methods[M]. Beijing:China Ocean Press, 1999.
    Roberts H, Shedd W, Hunt J. Dive site geology:DSV ALVIN (2006) and ROV JASON Ⅱ (2007) dives to the middle-lower continental slope, northern Gulf of Mexico[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2010, 57(21):1837-1858.
    Neves B M, Du Preez C, Edinger E. Mapping coral and sponge habitats on a shelf-depth environment using multibeam sonar and ROV video observations:Learmonth Bank, northern British Columbia, Canada[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2014, 99:169-183.
    Sen A, Ondréas H, Gaillot A, et al. The use of multibeam backscatter and bathymetry as a means of identifying faunal assemblages in a deep-sea cold seep[J]. Deep-Sea Research Part I:Oceanographic Research Papers, 2016, 110:33-49.
    陈义兰, 刘乐军, 刘晓瑜, 等. 深海油气勘探中的海底地形勘测技术[J]. 海洋测绘, 2015,35(2):18-22. Chen Yilan, Liu Lejun, Liu Xiaoyu, et al. Seabed topographic survey technology in deep-sea oil and gas exploration[J]. Hydrographic Surveying and Charting, 2015, 35(2):18-22.
    Ferrini V L, Fornari D J, Shank T M, et al. Submeter bathymetric mapping of volcanic and hydrothermal features on the East Pacific Rise crest at 9°50'N[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(1):Q01006.
    Ferrini V L, Tivey M K, Carbotte S M, et al. Variable morphologic expression of volcanic, tectonic, and hydrothermal processes at six hydrothermal vent fields in the Lau back-arc basin[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7):Q07022.
    郑翔. 冲绳海槽中部热液区及典型喷溢区地形地貌特征及成因分析[D]. 青岛:中国科学院海洋研究所, 2015. Zheng Xiang. Topographic and geomorphologic features and genesis analyses of the hydrothermal fields and typical hydrothermal vents in the mid-Okinawa Trough[D]. Qingdao:Institute of Oceanology, Chinese Academy of Sciences, 2015.
    Taylor B, Crook K, Sinton J. Extensional transform zones and oblique spreading centers[J]. Journal of Geophysical Research, 1994, 99(B10):19707-19718.
    Tregoning P. Plate kinematics in the western Pacific derived from geodetic observations[J]. Journal of Geophysical Research, 2002, 107:1-8.
    Tufar W. Modern hydrothermal activity, formation of complex massive sulfide deposits and associated vent communities in the Manus back-arc basin (Bismarck Sea, Papua New Guinea)[J]. Mitteilung der Osterreichen Geologischen Gesellshaft, 1990, 82:183-210.
    Craig H, Poreda R J. Studies of Methane and Helium in Hydrothermal Vent Plumes, Spreading-axis Basalts, and Volcanic Island Lavas and Gases in Southwest Pacific Marginal Basins:Papatua Expedition Legs V and VI, 1 February 1986-15 March 1986[R]. Scripps Institution of Oceanography, University of California, San Diego, 1987.
    Bach W, Roberts S, Vanko D A, et al. Controls of fluid chemistry and complexation on rare-earth element contents of anhydrite from the Pacmanus subseafloor hydrothermal system, Manus Basin, Papua New Guinea[J]. Mineralium Deposita, 2003, 38(8):916-935.
    Lackschewitz K S, Devey C W, Stoffers P, et al. Mineralogical, geochemical and isotopic characteristics of hydrothermal alteration processes in the active, submarine, felsic-hosted PACMANUS field, Manus Basin, Papua New Guinea[J]. Geochimica et Cosmochimica Acta, 2004, 68(21):4405-4427.
    Reeves E P, Seewald J S, Saccocia P, et al. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea[J]. Geochimica et Cosmochimica Acta, 2011, 75(4):1088-1123.
    Gamo T, Sakai H, Ishibashi J, et al. Hydrothermal plumes in the eastern Manus Basin, Bismarck Sea:CH 4, Mn, Al and pH anomalies[J]. Deep-Sea Research Part I椺敏湣捥敡??畧汲污数瑨楩湣???び?????????????ㄠ㈱???水㈠??戨爱?嬩??崳″?椭渲渳猴?刮??? ̄?愲爴牝椠杇慡???????即???楡汳汨敩爠???????敡杳?????獋礮渠瑕桮敩獱極獥?慨湹慤瑲潯浴票?潲晭?慬渠?慬捵瑩楤瘠敦?景敭氠獴楨捥?桄潅獓瑍敏摓?档祡摬牤潥瑲桡攬爠浍慡汮?獳礠獂瑡敳浩??敲慥獰瑬敹爠湴??慣湯畭獭??慴獳椠湢??偊慁瀠畒慥?乩敮睧??畮楤渠敆慊嬠?嵡??偯牮潥捛敊敝搮椠湄来獥?漭晓?瑡栠敒?佳捥敡慲湣??牐楡汲汴椠湉机?偣牥潡杮牯慧浲??卨捩楣攠湒瑥楳晥楡捲?剨攠獐畡汰瑥獲??传挱改愹渶??爴椳氨氱椱温机?倸爷漳札爱愸洷???潢汲氾敛朲攵?匠瑇慡瑭楯漠湔??呏填???ひち???????rlou J-L, et al. Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea[J]. Geology, 1997, 25:139-142.
    Yeats C J, Parr J M, Binns R A, et al. The SuSu Knolls hydrothermal field, eastern Manus Basin, Papua New Guinea:An active submarine high-sulfidation copper-gold system[J]. Economic Geology, 2014, 109(8):2207-2226.
    Auzende J M, Urabe T. Cruise explores hydrothermal vents of the Manus Basin[J]. Eos, Transaction American Geophysical Union, 1996, 77(26):244-244.
    Auzende J M, Urabe T, Ruellan E, et al. SHINKAI 6500 dives in the Manus Basin:New STARMER Japanese-French program[J]. Deep-Sea Research, 1996, 42(12):323-334.
    Craddock P R, Bach W, Seewald J S, et al. Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea:Indicators of sub-seafloor hydrothermal processes in back-arc basins[J]. Geochimica et Cosmochimica Acta, 2010, 74(19):5494-5513.
    Park S-H, Lee S-M, Kamenov G D, et al. Tracing the origin of subduction components beneath the South East rift in the Manus Basin, Papua New Guinea[J]. Chemical Geology, 2010, 269(3):339-349.
    曾志刚, 陈帅, 王晓媛, 等. 东马努斯海盆PACMANUS热液区Si-Fe-Mn羟基氧化物的矿物学和微形貌特征[J]. 中国科学:地球科学, 2013, 43(1):61-71. Zeng Zhigang, Chen Shuai, Wang Xiaoyuan, et al. Mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the PACMANUS hydrothermal field, Eastern Manus Basin[J]. Science China:Earth Sciences, 2013, 43(1):61-71.
    陶春辉, 李怀明, 金肖兵, 等. 西南印度洋脊的海底热液活动和硫化物勘探[J]. 科学通报, 2014, 59(19):1812-1822. Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge[J]. Chinese Sc
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1019) PDF downloads(523) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return