Citation: | YIN Xi-jie, CHEN Jian, GUO Ying-ying, SUN Zhi-lei, SHAO Chang-wei. Sulfate reduction and methane anaerobic oxidation: isotope geochemical evidence from the pore water of coastal sediments in the Jiulong Estuary[J]. Haiyang Xuebao, 2011, 33(4): 121-128. |
FROELICH P N, KLINKHAMMER G P, BENDER M L, et al. Early oxidation of organic matter in pelagic sediments of eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43:1075-1090.
|
PALLUD C, CAPPELLEN P V. Kinetics of microbial sulfate reduction in estuarine sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70:1148-1162.
|
POHLMAN J W, RUPPEL C, HUTCHINSON D R, et al. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2008, 25:942-951.
|
JΦRGENSEN B B. Mineralization of organic matter in the sea bed-The role of sulfate reduction[J]. Nature, 1982, 296:643-645.
|
WIJSMAN J W M, MIDDELBURG J J, HERMAN P M J, et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J]. Marine Chemistry, 2001, 74(4):261-278.
|
HOLMER M, STORKHOLM P. Sulphate reduction and sulphur cycling in lake sediments: a review[J]. Freshwater Biology, 2001, 46: 431-451.
|
REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemistry Review, 2007,107: 486-513.
|
KRUGER M, TREUDE T, WOLTERS H, et al. Microbial methane turnover in different marine habitats[J]. Palaeogeography Palaeoclimatology Palaeoecology,2005,227:6-17.
|
PARKES R J, CRAGG B A, BANNING N, et al. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark)[J]. Environmental Microbiology, 2007,9:1146-1161.
|
CANFIELD D E, THAMDRUP B, HANSEN J W. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction[J]. Geochimica et Cosmochimica Acta, 1993,57:3867-3883.
|
BRVCHERT V, CURRIE B, PEARD K R. Hydrogen sulphide and methane emissions on the central Namibian shelf[J]. Progress in Oceanography, 2009,83:169-179.
|
YVCEL M, KONOVALOV S K, MOORE T S, et al. Sulfur speciation in the upper Black Sea sediments[J].Chemical Geology, 2010,269:364-375.
|
KU T C W, KAY J, BROWNE E, et al. Pyritization of iron in tropical coastal sediments: implications for the development of iron, sulfur, and carbon diagenetic properties,Saint Lucia, Lesser Antilles[J]. Marine Geology, 2008, 249:184-205.
|
吴自军, 周怀阳, 彭晓彤, 等. 甲烷厌氧氧化作用:来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据[J].科学通报, 2006,51 (17): 2052-2059.
|
吴自军, 周怀阳, 彭晓彤. 珠江口桂山岛沉积物甲烷厌氧氧化作用研究[J]. 自然科学进展, 2007,17: 905-912.
|
吴自军, 周怀阳, 彭晓彤. 珠江口及其邻近海域沉积物甲烷-硫酸根界面分布深度及影响因素[J]. 海洋与湖沼,2009,40(3):249-260.
|
BERNER R A. Early Diagenesis: a Theoretical Approach[M]. Princeton, New Jersey:Princeton University Press, 1980.
|
FERDELMAN T G,FOSSING H, NEUMANN K, et al. Sulfate reduction in surface sediments of the southeast Atlantic continental margin between 15°38'S and 27°57'S (Angola and Namibia)[J]. Limnology and Oceanography, 1999,44:650-661.
|
BERNER R A, WESTRICH J T. Bioturbation and the early diagenesis of carbon and sulfur[J]. American Journal of Science, 1985, 285:193-206.
|
MARVIN-DIPASQUALE M C, BOYNTON W R, CAPONE D G. Benthic sulfate reduction along the Chesapeake Bay central channel: II. Temporal controls[J].Marine Ecology Progress Series. 2003,260: 55-70.
|
MARVIN-DIPASQUALE M C, CAPONE D G. Benthic sulfate reduction along the Chesapeake Bay central channel: I. Spatial trends and controls[J].Marine Ecology Progress Series,1998,168:213-228.
|
THODE-ANDERSEN S, JΦRGENSEN B B. Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and S° in coastal marine sediments[J]. Limnology and Oceanography, 1989, 34: 793-806.
|
IVERSEN N, JΦRGENSEN B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)[J]. Limnology and Oceanography, 1985, 30:944-955.
|
DEVOL A H, ANDERSON J J. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J]. Geochimica et Cosmochimica Acta, 1984, 48:993-1004.
|
BOROWSKI W S, PAULL C K, USSLER Ⅲ W. Marine pore-water sulfate profiles indicate in-situ methane flux from underlying gas hydrate[J]. Geology, 1996,24:655-658.
|
NIEW HNER C, HENSEN C, KASTEN S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia[J]. Geochimica et Cosmochimica Acta, 1998, 62:455-464.
|
HABICHT K H, CANFIELD D E. Sulfur isotope fractionation during bacterial sulfate reduction in organic rich sediments[J]. Geochimica et Cosmochimica Acta,1997,61(24): 5351-5361.
|
HABICHT K H, CANFIELD D E, RETHEMEIER J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite[J].Geochimica et Cosmochimica Acta, 1998,62(15): 2585-2595.
|
WORTMANN U G, BERNASCONI S M, BTTCHER M E. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction[J]. Geology, 2001, 29(7): 647-650.
|
WHITICAR M J, FABER E, SCHOELL M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence[J]. Geochimica et Cosmochimica Acta, 1986,50:693-709.
|
SANSONE F J, MARTENS C S. Volatile fatty acid cycling in organic-rich marine sediments[J].Geochimica et Cosmochimica Acta, 1982,46:1575-1589.
|
KIENE R P, OREMLAND R S, CATENA A, et al. Metabolism of reduced methylated sulfur compounds by anaerobic sediments and a pure culture of estuarine methanogen[J]. Appl Environ Microbiol, 1986,52:1037-1045.
|
WINFREY M R, WARD D M. Substrates for sulfate reduction and methane production in intertidal sediments[J]. Appl Environ Microbiol, 1983, 45:193-199.
|
HANSON R S, HANSON T E. Methanotrophic bacteria[J]. Microbiological Reviews,1996, 60(2): 439-471.
|
THOMAS J L,ARIAN P,HUUB J M. Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tazania[J].Ambio-A Journal of the Human Environment, 2002,7-8:614-616.
|
SACKETT W M..Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments[J].Geochimica et Cosmochimica Acta, 1978,42:571-580.
|
BLAIR N E, CARTER W D. The carbon isotope biogeochemistry of acetate from a methanogenic marine sediments[M]. Geochimica et Cosmochimica Acta, 1992, 56:1247-1258.
|
ALPERIN M J, REEBURGH W S, WHITICAR M J. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation[J]. Global Biochemical Cycle,1988, 2(1):279-288.
|
JΦRGENSEN B B, WEBER A, ZOPFI J. Sulfate reduction and anaerobic oxidation in Black Sea sediments[J]. Deep-Sea Research:Ⅰ, 2001, 48:2097-2120.
|
TREUDE T, NIGGEMANN J, KALLMEYER J, et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin[J]. Geochimica et Cosmochimica Acta, 2005, 69 (11): 2767-2779.
|
栾锡武.天然气水合物的上界面--硫酸盐还原-甲烷厌氧氧化界面[J].海洋地质与第四纪地质, 2009, 29(2):91-102.
|
ZHANG You-xu. Methane escape from gas hydrate systems in marine environment and methane driven oceanic eruptions[J]. Geophysical Research Letters, 2003, 30 (7):1-4.
|
SAUTER E J, MUYAKSHIN S I , CHARLOU J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles [J]. Earth and Planetary Science Letters, 2006, 2433:54-365.
|