Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
YIN Xi-jie, CHEN Jian, GUO Ying-ying, SUN Zhi-lei, SHAO Chang-wei. Sulfate reduction and methane anaerobic oxidation: isotope geochemical evidence from the pore water of coastal sediments in the Jiulong Estuary[J]. Haiyang Xuebao, 2011, 33(4): 121-128.
Citation: YIN Xi-jie, CHEN Jian, GUO Ying-ying, SUN Zhi-lei, SHAO Chang-wei. Sulfate reduction and methane anaerobic oxidation: isotope geochemical evidence from the pore water of coastal sediments in the Jiulong Estuary[J]. Haiyang Xuebao, 2011, 33(4): 121-128.

Sulfate reduction and methane anaerobic oxidation: isotope geochemical evidence from the pore water of coastal sediments in the Jiulong Estuary

  • Received Date: 2010-07-19
  • The spatital distrubution of sulfate reduction and anaerobic oxidation of methane (AOM) was investigated in the Jiulong estuarine sediment based on the concentration profiles of geochemical parameters, including sulfate, methane, δc(34S-SO42-), δc(13C-CH4) and chlorine in pore water. Sulfate concentrations in pore water decrease remarkably with the depth. The sulfate is consumed completely at depth intervals 55 and 130 cm at two stations (J-A and J-E). There is no significant change for chloride concentration through the depth of the cores. The δ34S values of sulfate increase with the depth in both cores. It is suggested that sulfate reduction occurs within the upper 55 and 130 cm in the sediment at Stas J-A and J-E, respectively. Methane concentrations sharply increase at the depth of sulfate-methane transition (SMT), and the δc(13C-CH4) values become heavier due to the AOM. Overall, these data suggest methane is consumed mainly by anaerobic oxidation at the SMT. There is obvious positive correlation between the depth of the SMT and the salinity of overlying water at two stations. It is assumed that the depth of the SMT is mainly controlled by the gradient of sulfate which is controlled by the salinity of the overlying water in the Jiulong Estuary.
  • loading
  • FROELICH P N, KLINKHAMMER G P, BENDER M L, et al. Early oxidation of organic matter in pelagic sediments of eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43:1075-1090.
    PALLUD C, CAPPELLEN P V. Kinetics of microbial sulfate reduction in estuarine sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70:1148-1162.
    POHLMAN J W, RUPPEL C, HUTCHINSON D R, et al. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2008, 25:942-951.
    JΦRGENSEN B B. Mineralization of organic matter in the sea bed-The role of sulfate reduction[J]. Nature, 1982, 296:643-645.
    WIJSMAN J W M, MIDDELBURG J J, HERMAN P M J, et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J]. Marine Chemistry, 2001, 74(4):261-278.
    HOLMER M, STORKHOLM P. Sulphate reduction and sulphur cycling in lake sediments: a review[J]. Freshwater Biology, 2001, 46: 431-451.
    REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemistry Review, 2007,107: 486-513.
    KRUGER M, TREUDE T, WOLTERS H, et al. Microbial methane turnover in different marine habitats[J]. Palaeogeography Palaeoclimatology Palaeoecology,2005,227:6-17.
    PARKES R J, CRAGG B A, BANNING N, et al. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark)[J]. Environmental Microbiology, 2007,9:1146-1161.
    CANFIELD D E, THAMDRUP B, HANSEN J W. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction[J]. Geochimica et Cosmochimica Acta, 1993,57:3867-3883.
    BRVCHERT V, CURRIE B, PEARD K R. Hydrogen sulphide and methane emissions on the central Namibian shelf[J]. Progress in Oceanography, 2009,83:169-179.
    YVCEL M, KONOVALOV S K, MOORE T S, et al. Sulfur speciation in the upper Black Sea sediments[J].Chemical Geology, 2010,269:364-375.
    KU T C W, KAY J, BROWNE E, et al. Pyritization of iron in tropical coastal sediments: implications for the development of iron, sulfur, and carbon diagenetic properties,Saint Lucia, Lesser Antilles[J]. Marine Geology, 2008, 249:184-205.
    吴自军, 周怀阳, 彭晓彤, 等. 甲烷厌氧氧化作用:来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据[J].科学通报, 2006,51 (17): 2052-2059.
    吴自军, 周怀阳, 彭晓彤. 珠江口桂山岛沉积物甲烷厌氧氧化作用研究[J]. 自然科学进展, 2007,17: 905-912.
    吴自军, 周怀阳, 彭晓彤. 珠江口及其邻近海域沉积物甲烷-硫酸根界面分布深度及影响因素[J]. 海洋与湖沼,2009,40(3):249-260.
    BERNER R A. Early Diagenesis: a Theoretical Approach[M]. Princeton, New Jersey:Princeton University Press, 1980.
    FERDELMAN T G,FOSSING H, NEUMANN K, et al. Sulfate reduction in surface sediments of the southeast Atlantic continental margin between 15°38'S and 27°57'S (Angola and Namibia)[J]. Limnology and Oceanography, 1999,44:650-661.
    BERNER R A, WESTRICH J T. Bioturbation and the early diagenesis of carbon and sulfur[J]. American Journal of Science, 1985, 285:193-206.
    MARVIN-DIPASQUALE M C, BOYNTON W R, CAPONE D G. Benthic sulfate reduction along the Chesapeake Bay central channel: II. Temporal controls[J].Marine Ecology Progress Series. 2003,260: 55-70.
    MARVIN-DIPASQUALE M C, CAPONE D G. Benthic sulfate reduction along the Chesapeake Bay central channel: I. Spatial trends and controls[J].Marine Ecology Progress Series,1998,168:213-228.
    THODE-ANDERSEN S, JΦRGENSEN B B. Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and S° in coastal marine sediments[J]. Limnology and Oceanography, 1989, 34: 793-806.
    IVERSEN N, JΦRGENSEN B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)[J]. Limnology and Oceanography, 1985, 30:944-955.
    DEVOL A H, ANDERSON J J. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J]. Geochimica et Cosmochimica Acta, 1984, 48:993-1004.
    BOROWSKI W S, PAULL C K, USSLER Ⅲ W. Marine pore-water sulfate profiles indicate in-situ methane flux from underlying gas hydrate[J]. Geology, 1996,24:655-658.
    NIEW HNER C, HENSEN C, KASTEN S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia[J]. Geochimica et Cosmochimica Acta, 1998, 62:455-464.
    HABICHT K H, CANFIELD D E. Sulfur isotope fractionation during bacterial sulfate reduction in organic rich sediments[J]. Geochimica et Cosmochimica Acta,1997,61(24): 5351-5361.
    HABICHT K H, CANFIELD D E, RETHEMEIER J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite[J].Geochimica et Cosmochimica Acta, 1998,62(15): 2585-2595.
    WORTMANN U G, BERNASCONI S M, BTTCHER M E. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction[J]. Geology, 2001, 29(7): 647-650.
    WHITICAR M J, FABER E, SCHOELL M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence[J]. Geochimica et Cosmochimica Acta, 1986,50:693-709.
    SANSONE F J, MARTENS C S. Volatile fatty acid cycling in organic-rich marine sediments[J].Geochimica et Cosmochimica Acta, 1982,46:1575-1589.
    KIENE R P, OREMLAND R S, CATENA A, et al. Metabolism of reduced methylated sulfur compounds by anaerobic sediments and a pure culture of estuarine methanogen[J]. Appl Environ Microbiol, 1986,52:1037-1045.
    WINFREY M R, WARD D M. Substrates for sulfate reduction and methane production in intertidal sediments[J]. Appl Environ Microbiol, 1983, 45:193-199.
    HANSON R S, HANSON T E. Methanotrophic bacteria[J]. Microbiological Reviews,1996, 60(2): 439-471.
    THOMAS J L,ARIAN P,HUUB J M. Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tazania[J].Ambio-A Journal of the Human Environment, 2002,7-8:614-616.
    SACKETT W M..Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments[J].Geochimica et Cosmochimica Acta, 1978,42:571-580.
    BLAIR N E, CARTER W D. The carbon isotope biogeochemistry of acetate from a methanogenic marine sediments[M]. Geochimica et Cosmochimica Acta, 1992, 56:1247-1258.
    ALPERIN M J, REEBURGH W S, WHITICAR M J. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation[J]. Global Biochemical Cycle,1988, 2(1):279-288.
    JΦRGENSEN B B, WEBER A, ZOPFI J. Sulfate reduction and anaerobic oxidation in Black Sea sediments[J]. Deep-Sea Research:Ⅰ, 2001, 48:2097-2120.
    TREUDE T, NIGGEMANN J, KALLMEYER J, et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin[J]. Geochimica et Cosmochimica Acta, 2005, 69 (11): 2767-2779.
    栾锡武.天然气水合物的上界面--硫酸盐还原-甲烷厌氧氧化界面[J].海洋地质与第四纪地质, 2009, 29(2):91-102.
    ZHANG You-xu. Methane escape from gas hydrate systems in marine environment and methane driven oceanic eruptions[J]. Geophysical Research Letters, 2003, 30 (7):1-4.
    SAUTER E J, MUYAKSHIN S I , CHARLOU J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles [J]. Earth and Planetary Science Letters, 2006, 2433:54-365.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1858) PDF downloads(1968) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return