Citation: | JIANG Xing-jie, HUA Feng, YUAN Ye-li. A new method for exact computation of the wave-wave non-linear energy transfer[J]. Haiyang Xuebao, 2010, 32(6): 35-40. |
PHILLIPS O M. On the dynamics of unsteady gravity waves of finite amplitude: Part 1.The elementary interactions[J]. J Fluid Mech, 1960(9): 193-217.
|
HASSELMANN K. On the non-linear energy transfer in a gravity-wave spectrum: Part 1. General theory[J]. J Fluid Mech, 1962(12): 481-500.
|
HASSELMANN K. On the non-linear energy transfer in a gravity-wave spectrum: Part 2. Conservation theorems; wave-particle analogy; irreversibility[J]. J Fluid Mech, 1963(15): 273-281.
|
HASSELMANN K. On the non-linear energy transfer in a gravity-wave spectrum: Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum[J]. J Fluid Mech,1963(15): 385-398.
|
SELL W, HASSELMANN K. Computations of nonlinear energy transfer for JONSWAP and empirical wind-wave spectra[J]. Rep Inst Geophys Univ Hamburg, 1972: 1-6.
|
LONGUET-HIGGINS M S. On the nonlinear transfer of energy in the peak of a gravity-wave spectrum:A simplified model[J]. Proc Roy Soc London, 1976, A347: 311-328.
|
FOX M J. On the nonlinear transfer of energy in the peak of a gravity-wave spectrum Ⅱ[J]. Proc Roy Soc London, 1976,A348: 467-483.
|
MASUDA A. Nonlinear energy transfer between wind waves[J]. J Phys Oceanogr, 1980, 10: 2082-2093.
|
HASSELMANN S, HASSELMANN K. A symmetrical method of computing the nonlinear transfer in a gravity wave spectrum[J]. Hamburger Geophys, Einzelschr, 1981,A 52: 163.
|
RESIO D T, PERRIE W. A numerical study of nonlinear energy fluxes due to wave-wave interactions: Part 1. Methodology and basic results[J]. J Fluid Mech,1991,223: 609-629.
|
HASSELMANN S, HASSELMANN K. Computations and parameterizetions of the nonlinear energy transfer in gravity-wave spectrum: Part Ⅱ. Parameterizations of the nonlinear energy transfer for application in wave models[J]. J Phys Oceanogr, 1985, 15: 1378-1391.
|
KOMATZU K, MASUDA A. A new scheme of nonlinear energy transfer among wind waves: RIAM method-Algorithm and performance[J]. J Oceanogr,1996,52: 509-537.
|
JENKINS A, PILLIPS O M. A simple formula for nonlinear wave-wave interaction[J]. Intern J of Offshore and Polar Engineering,2001,11: 81-86.
|
LIN R Q, PERRIE W. Wave-wave interactions in finite depth water[J]. J Geophys Res,1999, 104: 11 193-11 213.
|
VAN VLEDDER G Ph, HERBERS T H C, JENSEN R E, et al. Modelling of non-linear quadruplet wave-wave interactions in operational wave models . Proc. 27th Int. Conf. on Coastal Engineering, Sydney, Australia,2000.
|
VAN VLEDDER G Ph. Improved algorithms for computing the non-linear quadruplet wave-wave interactions in deep and shallow water . The ECMWF workshop on Ocean Wave Forecasting, European Centre for Medium-Range Weather Forecasts Reading, England, United Kingdom, 2001.
|
HERTERICH K, HASSELMANN K.A similarity relation for the nonlinear energy transfer in a finite-depth gravity-wave spectrum[J]. J Fluid Mech, 1980, 97: 215-224.
|
HASSELMANN S, HASSELMANN K. Computations and parameterizations of the nonlinear energy transfer in gravity-wave spectrum: Part Ⅰ. A new method for efficient computations of the exact nonlinear transfer integral[J]. J Phys Oceanogr, 1985, 15: 1369-1377.
|