Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
DING Wei-wei, LI Jia-biao, HAN Xi-qiu, LI Ming-bi, ERWIN Suess. Geomorphology, grain-size charicteristics, matter source and forming mechanism of sediment waves on the ocean bottom of the northeast South China Sea[J]. Haiyang Xuebao, 2010, 32(2): 96-105.
Citation: DING Wei-wei, LI Jia-biao, HAN Xi-qiu, LI Ming-bi, ERWIN Suess. Geomorphology, grain-size charicteristics, matter source and forming mechanism of sediment waves on the ocean bottom of the northeast South China Sea[J]. Haiyang Xuebao, 2010, 32(2): 96-105.

Geomorphology, grain-size charicteristics, matter source and forming mechanism of sediment waves on the ocean bottom of the northeast South China Sea

  • Received Date: 2009-07-29
  • Rev Recd Date: 2010-03-18
  • Deep-sea sediment waves are regular bed undulations on a relatively large scale on the ocean bottom of the northeast South China Sea. With high-resolution multi-beam data, seismic profiles and gravity piston columns, the geomorphology, the matter source and the forming mechanism of these sediment waves are discussed. The southern Taiwan Bank canyon divides the study area into two parts in different crestline orientation; the plan view morphology of the north part indicates that the crestline orientation is roughly parallel to the regional bathymetric contours. The dominant orientation is NE. In the south part the crestline is nearly N-S oriented and is orthogonal to the channel trend. The close relation between the sediment waves and the channel-levee system shows that the former is turbidity origin, which is also identified by the material composition and internal characteristics established by the gravity piston column and seismic-stratigraphic analysis. The development of the sediment waves are controlled by the Neogene tectonic activities. The collision between the Luzon arc and the Eurasian Plate since 6.5 Ma BP had triggered the Taiwan orogeny. The uplift and erosion of Taiwan Island offered sufficient terrigenous sediments. Furthermore, the well-developed channel-canyon system on the continental slope favors the turbidity flow’s transportation to the deep sea, while the continuous uplift and erosion of the Dongsha uplift west of the study area also provides some materials. With the decrease of the gradient of the continental slope, these turbidity sediments begin to accumulate and form NE-oriented sediment waves at the end of the channel-levee system. The NS-oriented sediment waves in the south of the south Taiwan Bank canyon are mostly resulted from flow’s spillover caused by the sharply turn of canyon’s course.
  • loading
  • ANTONIO C, ANNAMARIA C, TANIA M, et al. Seafloor undulation pattern on the Adriatic shelf and comparison to deep-water sediment waves[J]. Marine Geology, 2004, 213(1-4): 121—148.
    CHRISTIAN B, ANTONIO C, MAGDALENA S, et al. Sedimentary structures offshore Ortona, Adriatic Sea-deformation or sediment waves?[J]. Marine Geology, 2006, 234(1-4): 261—270.
    FAUGERES J C, MWZERAIS M L, STOW D A V. Contourite drift types and their distribution in the North and South Atlantic Ocean Basins[J]. Sediment Geol, 1993, 82: 189—2051.
    FLOOD R D, PIPER D J W, KLAUS A, et al. Proc ODP Init Repts. 155: College Station, TX(Ocean Drilling Program) . doi:10.2973/odp.proc.ir.155., 1995. 1233.
    HOWE J A. Turbidite and contourite sediment waves in the northern Rockall Trough, North Atlantic Ocean[J]. Sedimentology, 1996, 43: 219—234.
    JALLET L, GIRESSE P. Construction of the Pyreneo-Languedocian sedimentary ridge and associated sediment waves in the deep western Gulf of Lions (western Mediterranean)[J]. Marine and Petroleum Geology, 2005, 22: 865—888.
    DENNIELOU B, JALLET L, GIRESSE P, et al.Post-glacial persistence of turbiditic activity within the Rhne deep-sea turbidite system (Gulf of Lions, western Mediterranean): linking the outer shelf and the basin sedimentary records[J]. Marine Geology, 2009, (1-4):65—86.
    NORMARK W R, PIPER D J W, POSAMENTIER H, et al. Variability in form and growth of sediment waves on turbidite channels levees[J]. Marine Geology, 2002, 192: 23—58.
    WYNN R B, STOW D A V. Classification and characterization of deep-water sediment waves[J]. Marine Geology, 2002, 192: 7—22.
    WYNN R B, PIPER D J W, GEE M J R. Generation and migration of coarse grained sediment waves in turbidity current channels and channel transition zones[J]. Marine Geology, 2002, 192:59—78.
    MIGEON S, SAVOYE B, ZANELLA E, et al . Detailed seismic-reflection and sedimentary study of turbidite sediment waves on the Var Sedimentary Ridge (SE France): significance for sediment transport and deposition and for the mechanisms of sediment-wave construction[J]. Marine and Petroleum Geology, 2001, 18:179-208.
    张兴阳,高振中,姚雪根,等. 北大西洋洛克尔海槽东北部内波沉积——深水大型沉积物波成因的再解释[J]. 沉积学报,1999,17(3):464—472.
    刘丽军. 深水牵引流沉积特征及研究现状[J]. 石油与天然气地质,1999,20(4):369—374.
    佟彦明,何幼斌,朱光辉. 深水内波、内潮汐沉积类型及其油气意义[J]. 海相油气地质,2007,12(2):39—45.
    DAMUTH J E. Migrating sediment waves created by turbidity currents in the northern South China Basin[J]. Geology, 1979, 7: 520—523.
    王海荣,王英民,邱燕,等. 南海北部大陆边缘深水环境的沉积物波[J]. 自然科学进展,2007,19(9):1235—1243.
    王海荣,王英民,邱燕,等. 南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制[J]. 沉积学报,2008,26(1):39—45.
    HOWE J A. Turbidite and contourite sediment waves in the northern Rockall Trhough, North Atlantic Ocean[J]. Sedimentology, 1996, 43:219—234.
    DAMUTH J E. Neogene gravity tectonics and depositional processes on the deep Niger Delta continental margin[J]. Marine and Petroleum Geology, 1994, 11:320—346.
    BABONNEAU N, SAVOYE B, CREMER M, et al. Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan[J]. Marine and Petroleum Geology, 2002, 19: 445—467.
    POPESCU I, LERICOLAIS G, PANIN N, et al. The Danube Submarine Canyon (Black Sea): morphology and sedimentary process[J]. Marine Geology, 2004, 206: 249—265.
    ANDERSON D E. Holocene fluvial geomorphology of the Amargosa River through Amargosa Canyon, California[J]. Earth-Science Reviews, 2005, 73: 291—307.
    GARCIA M, ALONSO B, ERCILLA G, et al. The tributary valley systems of the Almeria Canyon (Alboran Sea, SW Mediterranean): sedimentary architecture[J]. Marine Geology, 2006, (3-4): 207—223.
    LEWIS K B, PANTIN H M. Channel-axis, overbank and drift sediment waves in the southern Hikurangi Trough, New Zealand[J]. Marine Geology, 2002, 192:123—151.
    姜涛,解习农,汤苏林,等. 浊流成因海底沉积波形成机理及数值模拟[J]. 科学通报,2007,52(16):1945—1950.
    杨群慧,张富元,林振宏,等. 南海东北部晚更新世以来沉积环境演变的矿物——地球化学记录[J]. 海洋学报,2004, 26(2):72—80.
    邵磊,李学杰,耿建华,等. 南海北部深水底流沉积作用[J]. 中国科学:D辑,2007,37(6):771—777.
    邵磊,李献华,韦刚健,等. 南海陆坡高速堆积体的物质来源[J]. 中国科学:D辑,2001,31(10):828—833.
    LI Y H. Denudation of Taiwan Island since the Pliocene Epoch[J]. Geology, 1976, 4:105—107.
    栾锡武,彭学超,王英民,等. 南海北部陆架海底沙波基本特征及属性[J]. 地质学报,2010,84(2):233—245.
    MILLIMAN J D, SYVITSKI J P. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. Journal of Geology, 1992, 100: 525—544.
    汪品先. 十五万年以来的南海[M]. 上海:同济大学出版社,1995:12.
    刘忠臣,刘保华,黄振宗,等. 中国近海及邻近海域地形地貌[M]. 北京:海洋出版社,2005:181—183.
    DING W W, LI J B, LI M B, et al. A Cenozoic tectono-sedimentary model of the Tainan Basin, the South China Sea: evidence from a multi-channel seismic profile[J]. Journal of Zhejiang University: Science A, 2008, 9(5): 702—713.
    HALL R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20: 353—431.
    HUANG C H, XIA K Y, PERTER B. Structural evolution from Paleogene extention to latest Miocene-recent arc-continent collision offshore Taiwan: comparison with on land geology[J]. Journal of Asian Earth Sciences, 2001, 19: 619—639.
    SUPPE J. Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan[J]. Mem Geol Soc China, 1984, 6: 21—33.
    REED D L, LUNDBERG N, LIU C S. Structural relations along the margins of the offshore Taiwan accretionary wedge: implications for accretion and crustal kinematics[J]. Acta Geol, 1992, 30: 105—122.
    HUANG C H, WU W Y, CHANG C P. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan[J]. Tectonophysics, 1997, 281: 31—51.
    丁巍伟,杨树锋,陈汉林,等. 台湾岛以南海域新近纪的弧陆碰撞造山作用[J]. 地质科学,2006,41(2):195—201.
    YU H S, LIU J C. Development of the shale diapir-controlled Fangliao Canyon on the continental slope off southwestern Taiwan[J]. Journal of Southeast Asian Earth Science, 1995, 11: 265—276.
    CHOW J, LEE J S, LIU C S, et al. A submarine canyon as the cause of a mud volcano—Liuchieuyu Island in Taiwan[J]. Marine Geology, 2001, 176, 55—63.
    YU H S, CHANG J F. The Penghu submarine canyon off southwestern Taiwan: morphology and origin[J]. TAO, 2002, 13(4): 547—562.
    CHUANG C Y, YU H S. Morphology and canyon forming processes of upper reach of the Penghu Submarine Canyon off southwestern Taiwan[J]. TAO, 2002, 13: 91—108.
    LUDMANN T, WONG H K. Neotectonic regime on the passive continental margin of the northern South China Sea[J]. Tectonophysics, 1999, 311(1-4): 113—138.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1770) PDF downloads(1714) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return