Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Han Shuo,Dong Dazheng,Shi Benwei, et al. Study on the Impact of Salt Marsh Vegetation Patches on Tidal Flat Erosion and Accretion Under the Influence of Typhoon 'Yanhua'[J]. Haiyang Xuebao,2025, 47(x):1–12
Citation: Han Shuo,Dong Dazheng,Shi Benwei, et al. Study on the Impact of Salt Marsh Vegetation Patches on Tidal Flat Erosion and Accretion Under the Influence of Typhoon "Yanhua"[J]. Haiyang Xuebao,2025, 47(x):1–12

Study on the Impact of Salt Marsh Vegetation Patches on Tidal Flat Erosion and Accretion Under the Influence of Typhoon "Yanhua"

  • Received Date: 2024-10-23
  • Rev Recd Date: 2025-01-24
  • Available Online: 2025-04-16
  • Typhoons, as one of the common natural disasters in coastal zones, have severe impacts on tidal flats. However, there is a significant lack of field data on typhoons, and studies on how salt marsh vegetation protects tidal flats during typhoon events are still very limited.. This study selected Chongming Dongtan in the Yangtze River Estuary as the research site. During the passage of Typhoon "In-Fa" in July 2021, hydrodynamic instruments and UAV photogrammetry (elevation measurements) were used to monitor hydrodynamics and sediment in both salt marsh and the marsh front areas, as well as to monitor the salt marsh ecosystem before and after the typhoon. The findings are as follows: (1) During the typhoon, wind speed, water depth, and wave height were 1.1 to 2.8 times those before and after the typhoon, and the hydrodynamic forces in the marsh front area were higher than those in the salt marsh area, with water depth, wave height, and flow velocity being 1.3 times, 1.2 times, and 1.9 times those of the salt marsh area, respectively; (2) Under the influence of Typhoon "In-Fa," vegetation patches at the marsh front, directly exposed to strong winds and waves, experienced hydrodynamic forces such as water depth and wave height that were 1.1 to 1.9 times those of the salt marsh area, resulting in erosion at the marsh front being 1.2 to 1.8 times that of the inland vegetation patches under the same vegetation coverage conditions; (3) In the marsh-front area, densely vegetated patches demonstrated stronger sediment accretion capacity compared to sparsely vegetated patches, with the maximum accretion thickness in densely vegetated areas reaching 45 cm, whereas sparse patches were mainly subject to erosion, with a maximum erosion depth of 17 cm. This indicates that the density of vegetation patches directly affects the sedimentation and erosion dynamics of the tidal flat. This study reveals that the arrangement and location of vegetation patches are crucial to the sedimentation and erosion of tidal flats under extreme weather events, which has significant implications for tidal flat management and ecological protection. It also provides theoretical support for establishing a robust natural barrier in response to extreme weather conditions.
  • loading
  • [1]
    Gu Jiali, Luo Min, Zhang Xiujuan, et al. Losses of salt marsh in China: trends, threats and management[J]. Estuarine, Coastal and Shelf Science, 2018, 214: 98−109. doi: 10.1016/j.ecss.2018.09.015
    [2]
    Shepard C C, Crain C M, Beck M W. The protective role of coastal marshes: a systematic review and meta-analysis[J]. PloS One, 2011, 6(11): e27374. doi: 10.1371/journal.pone.0027374
    [3]
    Mury A, Collin A, Houet T, et al. Using multispectral drone imagery for spatially explicit modeling of wave attenuation through a salt marsh meadow[J]. Drones, 2020, 4(2): 25. doi: 10.3390/drones4020025
    [4]
    Drake K, Halifax H, Adamowicz S C, et al. Carbon sequestration in tidal salt marshes of the Northeast United States[J]. Environmental Management, 2015, 56(4): 998−1008. doi: 10.1007/s00267-015-0568-z
    [5]
    Sheehan L, Sherwood E T, Moyer R P, et al. Blue carbon: an additional driver for restoring and preserving ecological services of coastal wetlands in Tampa Bay (Florida, USA)[J]. Wetlands, 2019, 39(6): 1317−1328. doi: 10.1007/s13157-019-01137-y
    [6]
    Wang Xuming, Wang Weiqi, Tong Chuan. A review on impact of typhoons and hurricanes on coastal wetland ecosystems[J]. Acta Ecologica Sinica, 2016, 36(1): 23−29. doi: 10.1016/j.chnaes.2015.12.006
    [7]
    Chen H, Lu W, Yan G, et al. Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China[J]. Biogeosciences, 2014, 11(19): 5323−5333. doi: 10.5194/bg-11-5323-2014
    [8]
    Babcock R C, Bustamante R H, Fulton E A, et al. Corrigendum: severe continental-scale impacts of climate change are happening now: extreme climate events impact marine habitat forming communities along 45% of Australia’s coast[J]. Frontiers in Marine Science, 2019, 6: 558. doi: 10.3389/fmars.2019.00558
    [9]
    Roman C T, Niering W A, Warren R S. Salt marsh vegetation change in response to tidal restriction[J]. Environmental Management, 1984, 8(2): 141−149. doi: 10.1007/BF01866935
    [10]
    张金池, 臧廷亮, 曾锋. 岩质海岸防护林树木根系对土壤抗冲性的强化效应[J]. 南京林业大学学报, 2001, 25(1): 9−12.

    Zhang Jinchi, Zang Tingliang, Zeng Feng. A study on soil anti-scourability intensification of protective forest root system in bedrock coast[J]. Journal of Nanjing Forestry University, 2001, 25(1): 9−12.
    [11]
    Marin‐Diaz B, Govers L L, van der Wal D, et al. The importance of marshes providing soil stabilization to resist fast‐flow erosion in case of a dike breach[J]. Ecological Applications, 2022, 32(6): e2622. doi: 10.1002/eap.2622
    [12]
    Ford H, Garbutt A, Ladd C, et al. Soil stabilization linked to plant diversity and environmental context in coastal wetlands[J]. Journal of Vegetation Science, 2016, 27(2): 259−268. doi: 10.1111/jvs.12367
    [13]
    李华, 杨世伦. 潮间带盐沼植物对海岸沉积动力过程影响的研究进展[J]. 地球科学进展, 2007, 22(6): 583−591.

    Li Hua, Yang Shilun. A review of influences of saltmarsh vegetation on physical processes in intertidal wetlands[J]. Advances in Earth Science, 2007, 22(6): 583−591.
    [14]
    Rupprecht F, Möller I, Paul M, et al. Vegetation-wave interactions in salt marshes under storm surge conditions[J]. Ecological Engineering, 2017, 100: 301−315. doi: 10.1016/j.ecoleng.2016.12.030
    [15]
    Temmerman S, Horstman E M, Krauss K W, et al. Marshes and mangroves as nature-based coastal storm buffers[J]. Annual Review of Marine Science, 2023, 15: 95−118. doi: 10.1146/annurev-marine-040422-092951
    [16]
    张振伟, 刘贞文, 刘必劲. 风暴潮与盐沼相互作用研究进展[J]. 海洋开发与管理, 2019, 36(7): 42−48. doi: 10.3969/j.issn.1005-9857.2019.07.008

    Zhang Zhenwei, Liu Zhenwen, Liu Bijin. A review of dynamic interactions between coastal storms and salt marshes[J]. Ocean Development and Management, 2019, 36(7): 42−48. doi: 10.3969/j.issn.1005-9857.2019.07.008
    [17]
    任璘婧, 李秀珍, 杨世伦, 等. 崇明东滩盐沼植被变化对滩涂湿地促淤消浪功能的影响[J]. 生态学报, 2014, 34(12): 3350−3358.

    Ren Linjing, Li Xiuzhen, Yang Shilun, et al. The impact of salt marsh change on sediment accumulation and wave attenuation at the East Chongming Island[J]. Acta Ecologica Sinica, 2014, 34(12): 3350−3358.
    [18]
    Barras J A. Land area changes in coastal Louisiana after Hurricanes Katrina and Rita[C]//Science and the Storms: the USGS Response to the Hurricanes of 2005. Dennis: USGS, 2005: 97−112.
    [19]
    Vandenbruwaene W, Bouma T J, Meire P, et al. Bio‐geomorphic effects on tidal channel evolution: impact of vegetation establishment and tidal prism change[J]. Earth Surface Processes and Landforms, 2013, 38(2): 122−132. doi: 10.1002/esp.3265
    [20]
    杨世伦, 时钟, 赵庆英. 长江口潮沼植物对动力沉积过程的影响[J]. 海洋学报, 2001, 23(4): 75−80.

    Yang Shilun, Shi Zhong, Zhao Qingying. Influence of tidal marsh vegetations on hydrodynamics and sedimentation in the Changjiang Estuary[J]. Haiyang Xuebao, 2001, 23(4): 75−80.
    [21]
    Ma Gangfeng, Han Yun, Niroomandi A, et al. Numerical study of sediment transport on a tidal flat with a patch of vegetation[J]. Ocean Dynamics, 2015, 65(2): 203−222. doi: 10.1007/s10236-014-0804-8
    [22]
    秦伟, 曹文洪, 郭乾坤, 等. 植被格局对侵蚀产沙影响的研究评述[J]. 生态学报, 2017, 37(14): 4905−4912.

    Qin Wei, Cao Wenhong, Guo Qiankun, et al. Review of the effects of vegetation patterns on soil erosion and sediment yield[J]. Acta Ecologica Sinica, 2017, 37(14): 4905−4912.
    [23]
    Ludwig J A, Wilcox B P, Breshears D D, et al. Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes[J]. Ecology, 2005, 86(2): 288−297. doi: 10.1890/03-0569
    [24]
    Li Li, Xu Jiayang, Ren Yihan, et al. Effects of wave-current interactions on sediment dynamics in Hangzhou Bay during Typhoon Mitag[J]. Frontiers in Earth Science, 2022, 10: 931472. doi: 10.3389/feart.2022.931472
    [25]
    Boer M, Puigdefábregas J. Effects of spatially structured vegetation patterns on hillslope erosion in a semiarid Mediterranean environment: a simulation study[J]. Earth Surface Processes and Landforms, 2005, 30(2): 149−167. doi: 10.1002/esp.1180
    [26]
    沈中原. 坡面植被格局对水土流失影响的实验研究[D]. 西安: 西安理工大学, 2006.

    Shen Zhongyuan. Study on the effect of vegetation slope pattern on soil and water loss[D]. Xi’an: Xi’an University of Technology, 2006.
    [27]
    丁文峰, 李勉. 不同坡面植被空间布局对坡沟系统产流产沙影响的实验[J]. 地理研究, 2010, 29(10): 1870−1878.

    Ding Wenfeng, Li Mian. Experimental study on the effect of slope vegetation distribution variation on runoff and sediment yield in slope-gully system[J]. Geographical Research, 2010, 29(10): 1870−1878.
    [28]
    游珍, 李占斌, 蒋庆丰. 植被在坡面的不同位置对降雨产沙量影响[J]. 水土保持通报, 2006, 26(6): 28−31.

    You Zhen, Li Zhanbin, Jiang Qingfeng. Effect of vegetation’s position on slope on sediment yield induced by rainfall[J]. Bulletin of Soil and Water Conservation, 2006, 26(6): 28−31.
    [29]
    刘红, 何青, 吉晓强, 等. 波流共同作用下潮滩剖面沉积物和地貌分异规律——以长江口崇明东滩为例[J]. 沉积学报, 2008, 26(5): 833−843.

    Liu Hong, He Qing, Ji Xiaoqiang, et al. Sediment and geomorphology differentiation of tidal flat profiles combined wave and current actions: a case of the east Chongming tidal flat, Changjiang Estuary[J]. Acta Sedimentologica Sinica, 2008, 26(5): 833−843.
    [30]
    Yang Shilun, Li H, Ysebaert T, et al. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: on the role of physical and biotic controls[J]. Estuarine, Coastal and Shelf Science, 2008, 77(4): 657−671. doi: 10.1016/j.ecss.2007.10.024
    [31]
    Tian Bo, Zhang Liquan, Wang Xiangrong, et al. Forecasting the effects of sea-level rise at Chongming Dongtan Nature Reserve in the Yangtze Delta, Shanghai, China[J]. Ecological Engineering, 2010, 36(10): 1383−1388. doi: 10.1016/j.ecoleng.2010.06.016
    [32]
    张智伟. 台风天气下长江冲淡水扩展的响应机制[D]. 上海: 华东师范大学, 2020.

    Zhang Zhiwei. Dynamical response of Changjiang River plume extension to typhoon events[D]. Shanghai: East China Normal University, 2020.
    [33]
    范吉庆. 台风对长江口潮间带湿地沉积动力过程的影响[D]. 上海: 华东师范大学, 2019.

    Fan Jiqing. Influence of typhoon on sedimentary dynamic process of intertidal wetland in Yangtze Estuary[D]. Shanghai: East China Normal University, 2019.
    [34]
    杨世伦, 陈吉余. 试论植物在潮滩发育演变中的作用[J]. 海洋与湖沼, 1994, 25(6): 631−635.

    Yang Shilun, Chen Jiyu. The role of vegetation in mud coast processes[J]. Oceanologia et Limnologia Sinica, 1994, 25(6): 631−635.
    [35]
    丁文慧, 姜俊彦, 李秀珍, 等. 崇明东滩南部盐沼植被空间分布及影响因素分析[J]. 植物生态学报, 2015, 39(7): 704−716. doi: 10.17521/cjpe.2015.0067

    Ding Wenhui, Jiang Junyan, Li Xiuzhen, et al. Spatial distribution of species and influencing factors across salt marsh in southern Chongming Dongtan[J]. Chinese Journal of Plant Ecology, 2015, 39(7): 704−716. doi: 10.17521/cjpe.2015.0067
    [36]
    杨世伦. 长江口沉积物粒度参数的统计规律及其沉积动力学解释[J]. 泥沙研究, 1994(3): 23−31.

    Yang Shilun. Statistic features for grain-size parameters of the Yangtze River Estuary and their hydrodynamic explanation[J]. Journal of Sediment Research, 1994(3): 23−31.
    [37]
    张莹鑫, 张文祥, 史本伟, 等. 淤泥质潮间带植被-光滩沉积物稳定性研究——以长江口崇明东滩为例[J]. 华东师范大学学报(自然科学版), 2022(6): 169−177.

    Zhang Yingxin, Zhang Wenxiang, Shi Benwei, et al. Study on sediment stability between vegetation and bare flats in a muddy intertidal flat: a case study for Chongming Dongtan in the Yangtze River Estuary[J]. Journal of East China Normal University (Natural Science), 2022(6): 169−177.
    [38]
    Li Tianyou, Xue Liming, Zhang Xinmiao, et al. Harvested Spartina area performs better than native Scirpus in sedimentation and carbon preservation under storm surge[J]. Ocean & Coastal Management, 2024, 249: 107002.
    [39]
    Pei Haojie, Wan Peng, Li Changchun, et al. Accuracy analysis of UAV remote sensing imagery mosaicking based on structure-from-motion[C]//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth: IEEE, 2017: 5904-5907.
    [40]
    Genchi S A, Vitale A J, Perillo G M E, et al. Structure-from-motion approach for characterization of bioerosion patterns using UAV imagery[J]. Sensors, 2015, 15(2): 3593−3609. doi: 10.3390/s150203593
    [41]
    Küng O, Strecha C, Fua P, et al. Simplified building models extraction from ultra-light UAV imagery[C]//International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-1/C22. Zurich: ISPRS Zurich 2011 Workshop, 2011: 217-222.
    [42]
    Karasaka L, Keleş S H. CSF (Cloth simulation filtering) algoritmasının zemin noktalarını Filtrelemedeki Performans Analizi[J]. Afyon Kocatepe Ü niversitesi Fen ve Mühendislik Bilimleri Dergisi, 2020, 20(20): 267−275.
    [43]
    Li Yameng, Chen Qi, Li Chaokui, et al. Improvement of CSF based on a wide range of urban complex scenes[C]//Proceedings Volume 10779, Lidar Remote Sensing for Environmental Monitoring XVI. Honolulu: SPIE Asia-Pacific Remote Sensing, 2018: 1077911.
    [44]
    Oliver M A, Webster R. Kriging: a method of interpolation for geographical information systems[J]. International Journal of Geographical Information Systems, 1990, 4(3): 313−332. doi: 10.1080/02693799008941549
    [45]
    汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5): 152−159. doi: 10.3969/j.issn.1002-6819.2015.05.022

    Wang Xiaoqin, Wang Miaomiao, Wang Shaoqiang, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 152−159. doi: 10.3969/j.issn.1002-6819.2015.05.022
    [46]
    Chen Dezhi, Tang Jieping, Xing Fei, et al. Erosion and accretion of salt marsh in extremely shallow water stages[J]. Frontiers in Marine Science, 2023, 10: 1198536. doi: 10.3389/fmars.2023.1198536
    [47]
    Allen J R L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe[J]. Quaternary Science Reviews, 2000, 19(12): 1155−1231. doi: 10.1016/S0277-3791(99)00034-7
    [48]
    李华, 杨世伦. 潮间带盐沼植物对海岸沉积动力过程影响的研究进展[J]. 地球科学进展, 2007, 22(6): 583−591.

    Li Hua, Yang Shilun. A review of influences of saltmarsh vegetation on physical processes in intertidal wetlands[J]. Advances in Earth Science, 2007, 22(6): 583−591.
    [49]
    Figlus J, Sigren J M, Feagin R A, et al. The unique ability of fine roots to reduce vegetated coastal dune erosion during wave collision[J]. Frontiers in Built Environment, 2022, 8: 904837. doi: 10.3389/fbuil.2022.904837
    [50]
    Hauser S, Meixler M S, Laba M. Quantification of impacts and ecosystem services loss in new jersey coastal wetlands due to hurricane sandy storm surge[J]. Wetlands, 2015, 35(6): 1137−1148. doi: 10.1007/s13157-015-0701-z
    [51]
    Zhao Chunhong, Gao Jian’en, Huang Yuefei, et al. Effects of vegetation stems on hydraulics of overland flow under varying water discharges[J]. Land Degradation & Development, 2016, 27(3): 748−757.
    [52]
    Kastler J A, Wiberg P L. Sedimentation and boundary changes of Virginia salt marshes[J]. Estuarine, Coastal and Shelf Science, 1996, 42(6): 683−700. doi: 10.1006/ecss.1996.0044
    [53]
    Francalanci S, Bendoni M, Rinaldi M, et al. Ecomorphodynamic evolution of salt marshes: experimental observations of bank retreat processes[J]. Geomorphology, 2013, 195: 53−65. doi: 10.1016/j.geomorph.2013.04.026
    [54]
    Molina A, Govers G, Cisneros F, et al. Vegetation and topographic controls on sediment deposition and storage on gully beds in a degraded mountain area[J]. Earth Surface Processes and Landforms, 2009, 34(6): 755−767. doi: 10.1002/esp.1747
    [55]
    Sun Ruoxiu, Ma Li, Zhang Shouhong, et al. Study on landscape patches influencing hillslope erosion processes and flow hydrodynamics in the Loess Plateau of western Shanxi Province, China[J]. Water, 2020, 12(11): 3201. doi: 10.3390/w12113201
    [56]
    Ma Gangfeng, Han Yun, Niroomandi A, et al. Numerical study of sediment transport on a tidal flat with a patch of vegetation[J]. Ocean Dynamics, 2015, 65(2): 203−222.
    [57]
    Zhou Zeng, Ye Qinghua, Coco G. A one-dimensional biomorphodynamic model of tidal flats: sediment sorting, marsh distribution, and carbon accumulation under sea level rise[J]. Advances in Water Resources, 2016, 93: 288−302. doi: 10.1016/j.advwatres.2015.10.011
    [58]
    Zhu Shibing, Chen Yining, Yan Weibing, et al. The hummocky patches and associated sediment dynamics over an accretional intertidal flat[J]. Frontiers in Earth Science, 2022, 10: 908351. doi: 10.3389/feart.2022.908351
    [59]
    Zhang Xingchang, Shao Ming’an. Effects of vegetation coverage and management practice on soil nitrogen loss by erosion in a hilly region of the Loess Plateau in China[J]. Acta Botanica Sinica, 2003, 45(10): 1195−1203.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views (17) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return