Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Tang Baogui,Cai Runjia,Zhang Jing. Transcriptome analysis of liver of juvenile cobia under low temperature stress[J]. Haiyang Xuebao,2024, 47(x):1–11
Citation: Tang Baogui,Cai Runjia,Zhang Jing. Transcriptome analysis of liver of juvenile cobia under low temperature stress[J]. Haiyang Xuebao,2024, 47(x):1–11

Transcriptome analysis of liver of juvenile cobia under low temperature stress

  • Received Date: 2024-01-15
  • Rev Recd Date: 2024-11-11
  • Available Online: 2024-11-29
  • In order to systematically study the effect of low temperature stress on the lipid metabolism of cobia juvenile, cobia juveniles were raised at normal temperature (30.5±1.0℃) and low temperature (20.0±0.5℃) for 7 days, and then the cobia livers were sequenced with genome-based transcriptome, and there were 3 biological replicates in each group. The research results show that a total of 243,694,134 row reads were found in 6 sequencing samples. The Q30% of all samples exceeded 94%, and the GC% was in the range of 47.65%-48.16%. A total of 4,362 differentially expressed genes were screened, of which 2,793 genes were up-regulated, and 1,569 genes were down-regulated. In terms of lipid metabolism, A large number of differential genes are enriched in biological processes such as lipid metabolism, lipid biosynthesis, glycerophospholipid metabolism, phospholipid metabolism and glycerideid metabolism, and also found that multiple lipid metabolism-related genes in the PPAR signaling pathway, such as PPARα, PPARβ, SCD-1, CPT-1, and CPT-2 play a key role in cobia juvenile under low temperature stress. In terms of glucose metabolism, a great many of genes are enriched in biological processes such as glycolysis/gluconeogenesis, galactose metabolism, starch and sucrose metabolism, and pentose and glucuronate interconversions. Notably, genes such as G6PC and ENO play crucial regulatory roles in the response of cobia juvenile to low temperature stress.
  • loading
  • [1]
    张宇航, 高扬, 李文红, 等. 低温停食和复温后投喂频率对奥尼罗非鱼幼鱼生长的影响[J]. 西南农业学报, 2020, 33(9): 2125−2131.

    Zhang Yuhang, Gao Yang, Li Wenhong, et al. Effects of feeding frequency after food deprivation with low temperature and rewarming on growth of hybrid tilapia juvenile (Oreochromis niloticus×O. aureus)[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(9): 2125−2131.
    [2]
    Li A J, Leung P T Y, Bao V W W, et al. Temperature-dependent physiological and biochemical responses of the marine medaka Oryzias melastigma with consideration of both low and high thermal extremes[J]. Journal of Thermal Biology, 2015, 54: 98−105. doi: 10.1016/j.jtherbio.2014.09.011
    [3]
    He Jie, Qiang Jun, Yang Hong, et al. Changes in the fatty acid composition and regulation of antioxidant enzymes and physiology of juvenile genetically improved farmed tilapia Oreochromis niloticus (L. ), subjected to short-term low temperature stress[J]. Journal of Thermal Biology, 2015, 53: 90−97. doi: 10.1016/j.jtherbio.2015.08.010
    [4]
    Sun Zhenzhu, Tan Xiaohong, Liu Qingying, et al. Physiological, immune responses and liver lipid metabolism of orange-spotted grouper (Epinephelus coioides) under cold stress[J]. Aquaculture, 2019, 498: 545−555. doi: 10.1016/j.aquaculture.2018.08.051
    [5]
    Mininni A N, Milan M, Ferraresso S, et al. Liver transcriptome analysis in gilthead sea bream upon exposure to low temperature[J]. BMC Genomics, 2014, 15(1): 765. doi: 10.1186/1471-2164-15-765
    [6]
    Gracey A Y, Fraser E J, Li Weizhong, et al. Coping with cold: an integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(48): 16970−16975.
    [7]
    Zhou Tao, Gui Lang, Liu Mingli, et al. Transcriptomic responses to low temperature stress in the Nile tilapia, Oreochromis niloticus[J]. Fish & Shellfish Immunology, 2019, 84: 1145−1156.
    [8]
    文鑫. 暗纹东方鲀(Takifugu fasciatus)应对低温胁迫的生理响应和分子机制研究[D]. 南京: 南京师范大学, 2019.

    Wen Xin. Physiological responses and molecular mechanisms of the pufferfish (Takifugu fasciatus) to low-temperature stress[D]. Nanjing: Nanjing Normal University, 2019. (查阅网上资料, 未找到本条文献英文信息, 请确认)
    [9]
    王维政, 曾泽乾, 黄建盛, 等. 低氧胁迫对军曹鱼幼鱼抗氧化、免疫能力及能量代谢的影响[J]. 广东海洋大学学报, 2020, 40(5): 12−18.

    Wang Weizheng, Zeng Zeqian, Huang Jiansheng, et al. Effects of hypoxia stress on antioxidation, immunity and energy metabolism of juvenile cobia, Rachycentron canadum[J]. Journal of Guangdong Ocean University, 2020, 40(5): 12−18.
    [10]
    刘生茂. 微量样本的高通量RNASeq方法研究和应用[D]. 广州: 华南理工大学, 2017.

    Liu Shengmao. Research and application of high throughput RNASeq method for micro sample[D]. Guangzhou: South China University of Technology, 2017.
    [11]
    Tocher D R. Metabolism and functions of lipids and fatty acids in teleost fish[J]. Reviews in Fisheries Science, 2003, 11(2): 107−184. doi: 10.1080/713610925
    [12]
    林超, 柳军, 孙宏斌. 脂质生物合成的转录调控、相关靶标确证及新药发现[J]. 中国科学: 化学, 2015, 45(9): 923−936. doi: 10.1360/N032015-00114

    Lin Chao, Liu Jun, Sun Hongbin. Transcriptional regulation of lipid biosynthesis, related target validation and drug discovery[J]. SCIENTIA SINICA Chimica, 2015, 45(9): 923−936. doi: 10.1360/N032015-00114
    [13]
    高正松, 王保成, 徐松泉, 等. 磷脂的合成研究进展[J]. 广州化工, 2020, 48(19): 1−6.

    Gao Zhengsong, Wang Baocheng, Xu Songquan, et al. Research progress on the synthesis of phospholipids[J]. Guangzhou Chemical Industry, 2020, 48(19): 1−6.
    [14]
    Leather S R, Walters K F A, Bale J S. The Ecology of Insect Overwintering[M]. New York: Cambridge University Press, 1993.
    [15]
    Qian Baoying, Xue Liangyi. Liver transcriptome sequencing and de novo annotation of the large yellow croaker (Larimichthy crocea) under heat and cold stress[J]. Marine Genomics, 2016, 25: 95−102. doi: 10.1016/j.margen.2015.12.001
    [16]
    Streck G. Chemical and biological analysis of estrogenic, progestagenic and androgenic steroids in the environment[J]. TrAC Trends in Analytical Chemistry, 2009, 28(6): 635−652. doi: 10.1016/j.trac.2009.03.006
    [17]
    李鑫, 杨蕊, 臧强, 等. 糖皮质激素的药理作用机制研究进展[J]. 国际药学研究杂志, 2009, 36(1): 27−30.

    Li Xin, Yang Rui, Zang Qiang, et al. Pharmacological actions of glucocorticoids: progress in mechanisms[J]. Journal of International Pharmaceutical Research, 2009, 36(1): 27−30.
    [18]
    Bernier N J, Van Der Kraak G, Farrell A P, et al. Fish Physiology[M]//Bernier N J, Van Der Kraak G, Farrell A P, et al. Fish Neuroendocrinology. Salt Lake City: Academic Press, 2009: 235−311.
    [19]
    Bernier N J, Peter R E. The hypothalamic-pituitary-interrenal axis and the control of food intake in teleost fish[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2001, 129(2/3): 639−644.
    [20]
    马瑶, 程海东. PPAR基因多态性的研究进展[J]. 中国优生与遗传杂志, 2007, 15(9): 6−9.

    Ma Yao, Cheng Haidong. Research advances in PPAR genetic polymorphisms[J]. Chinese Journal of Birth Health & Heredity, 2007, 15(9): 6−9. (查阅网上资料, 未找到本条文献英文信息, 请确认)
    [21]
    钱伦, 钱云霞, 童丽娟. 大黄鱼PPAR β全长cDNA的克隆和组织表达[J]. 生物学杂志, 2010, 27(6): 1−4.

    Qian Lun, Qian Yunxia, Tong Lijuan. Cloning of full-length cDNA and RT-PCR expression analysis of PPAR β in Larimichthys crocea[J]. Journal of Biology, 2010, 27(6): 1−4.
    [22]
    徐世文, 樱桃, 李术. PPAR-γ功能的研究进展[J]. 东北农业大学学报, 2011, 42(9): 1−6.

    Xu Shiwen, Ying Tao, Li Shu. Advance on PPAR-γ function[J]. Journal of Northeast Agricultural University, 2011, 42(9): 1−6.
    [23]
    Tsai M L, Chen H Y, Tseng M C, et al. Cloning of peroxisome proliferators activated receptors in the cobia (Rachycentron canadum) and their expression at different life-cycle stages under cage aquaculture[J]. Gene, 2008, 425(1-2): 69−78. doi: 10.1016/j.gene.2008.08.004
    [24]
    蔡润佳, 张静, 黄建盛, 等. 低温胁迫对军曹鱼幼鱼脂代谢相关生理生化的影响[J]. 广东海洋大学学报, 2021, 41(3): 123−130.

    Cai Runjia, Zhang Jing, Huang Jiansheng, et al. Effects of low temperature stress on physiology and biochemistry of lipid metabolism of juvenile cobia, Rachycentron canadum[J]. Journal of Guangdong Ocean University, 2021, 41(3): 123−130.
    [25]
    方玲玲. 卵形鲳鲹PPARαCPT1基因的克隆及不同条件对其表达影响的分析[D]. 湛江: 广东海洋大学, 2016.

    Fang Lingling. Molecular cloning and expression under the different conditions of peroxisome proliferator activated receptors-α and carnitine palmitoyl transferase in Trachinotus ovatus[D]. Zhanjiang: Guangdong Ocean University, 2016.
    [26]
    Zhang Haibo, Zhang Xiangfei, Wang Zhisheng, et al. Effects of dietary energy level on lipid metabolism-related gene expression in subcutaneous adipose tissue of Yellow breed × Simmental cattle[J]. Animal Science Journal, 2015, 86(4): 392−400. doi: 10.1111/asj.12316
    [27]
    Hsieh S L, Kuo C M. Stearoyl-CoA desaturase expression and fatty acid composition in milkfish (Chanos chanos) and grass carp (Ctenopharyngodon idella) during cold acclimation[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2005, 141(1): 95−101. doi: 10.1016/j.cbpc.2005.02.001
    [28]
    Zerai D B, Fitzsimmons K M, Collier R J. Transcriptional response of delta-9-desaturase gene to acute and chronic cold Stress in Nile tilapia, Oreochromis niloticus[J]. Journal of the World Aquaculture Society, 2010, 41(5): 800−806. doi: 10.1111/j.1749-7345.2010.00422.x
    [29]
    Xu Hao, Zhang Dongling, Yu Dahui, et al. Molecular cloning and expression analysis of scd1 gene from large yellow croaker Larimichthys crocea under cold stress[J]. Gene, 2015, 568(1): 100−108. doi: 10.1016/j.gene.2015.05.027
    [30]
    萧培珍. 日粮中添加水飞蓟素对草鱼脂质代谢的影响及其机制研究[D]. 杨凌: 西北农林科技大学, 2017.

    Xiao Peizhen. Effect of dietary silymarin on lipid metabolism of grass carp (Ctenopharygodon idellus)[D]. Yangling: Northwest A&F University, 2017.
    [31]
    Melis R, Sanna R, Braca A, et al. Molecular details on gilthead sea bream (Sparus aurata) sensitivity to low water temperatures from 1H NMR metabolomics[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2017, 204: 129−136.
    [32]
    李志艳, 张小燕, 唐海林, 等. M2型丙酮酸激酶调控肿瘤细胞能量代谢的研究进展[J]. 广东医学, 2016, 37(18): 2829−2831.

    Li Zhiyan, Zhang Xiaoyan, Tang Hailin, et al. Progress in the regulation of energy metabolism in tumor cells by M2-type pyruvate kinase[J]. Guangdong Medical Journal, 2016, 37(18): 2829−2831. (查阅网上资料, 未找到本条文献英文信息, 请确认)
    [33]
    Yang Erjun, Amenyogbe E, Zhang Jiandong, et al. Integrated transcriptomics and metabolomics analysis of the intestine of cobia (Rachycentron canadum) under hypoxia stress[J]. Aquaculture Reports, 2022, 25: 101261. doi: 10.1016/j.aqrep.2022.101261
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views (33) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return