Citation: | Zhu Qiguang,Shen Zhen,Li Xiang, et al. Prediction of seawater dissolved oxygen concentration based on multi-buoy spatial multi-feature fusion[J]. Haiyang Xuebao,2025, 47(x):1–13 |
[1] |
齐庆华, 蔡榕硕, 颜秀花. 气候变化与我国海洋灾害风险治理探讨[J]. 海洋通报, 2019, 38(4): 361−367.
Qi Qinghua, Cai Rongshuo, Yan Xiuhua. Discussion on climate change and marine disaster risk governance in the coastal China seas[J]. Marine Science Bulletin, 2019, 38(4): 361−367.
|
[2] |
Kisi O, Alizamir M, Gorgij A D. Dissolved oxygen prediction using a new ensemble method[J]. Environmental Science and Pollution Research, 2020, 27(9): 9589−9603. doi: 10.1007/s11356-019-07574-w
|
[3] |
Li Yanni, Yan Shiqiang, Shi Hongda, et al. Hydrodynamic analysis of a novel multi-buoy wind-wave energy system[J]. Renewable Energy, 2023, 219: 119477. doi: 10.1016/j.renene.2023.119477
|
[4] |
Liu Shixuan, Song Miaomiao, Chen Shizhe, et al. An intelligent modeling framework to optimize the spatial layout of ocean moored buoy observing networks[J]. Frontiers in Marine Science, 2023, 10: 1134418. doi: 10.3389/fmars.2023.1134418
|
[5] |
Jin Junchen, Rong Dingding, Zhang Tong, et al. A GAN-based short-term link traffic prediction approach for urban road networks under a parallel learning framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 16185−16196. doi: 10.1109/TITS.2022.3148358
|
[6] |
杜先君, 李河. 基于集成GCN-Transformer网络的ENSO预测模型[J]. 海洋学报, 2023, 45(12): 156−165.
Du Xianjun, Li He. ENSO prediction model based on integrated GCN-Transformer network[J]. Haiyang Xuebao, 2023, 45(12): 156−165.
|
[7] |
Velickovic P, Cucurull G, Casanova A, et al. Graph attention networks[J]. arXiv: 1710.10903, 2017. (查阅网上资料, 不确定本条文献类型及格式是否正确, 请确认)
|
[8] |
Li Wenjing, Fang Huaiyang, Qin Guangxiong, et al. Concentration estimation of dissolved oxygen in Pearl River Basin using input variable selection and machine learning techniques[J]. Science of the Total Environment, 2020, 731: 139099. doi: 10.1016/j.scitotenv.2020.139099
|
[9] |
Wu Junhao, Wang Zhaocai, Dong Jinghan, et al. Multi-step ahead dissolved oxygen concentration prediction based on knowledge guided ensemble learning and explainable artificial intelligence[J]. Journal of Hydrology, 2024, 636: 131297. doi: 10.1016/j.jhydrol.2024.131297
|
[10] |
Liu Yeqi, Gong Chuanyang, Yang Ling, et al. DSTP-RNN: a dual-stage two-phase attention-based recurrent neural network for long-term and multivariate time series prediction[J]. Expert Systems with Applications, 2020, 143: 113082. doi: 10.1016/j.eswa.2019.113082
|
[11] |
Yue Weihao, Xu Yongsheng, Xiang Liang, et al. Prediction of 3-D ocean temperature based on self-attention and predictive RNN[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1501305.
|
[12] |
石绥祥, 王蕾, 余璇, 等. 长短期记忆神经网络在叶绿素a浓度预测中的应用[J]. 海洋学报, 2020, 42(2): 134−142. doi: 10.3969/j.issn.0253-4193.2020.02.014
Shi Suixiang, Wang Lei, Yu Xuan, et al. Application of long term and short term memory neural network in prediction of chlorophyll a concentration[J]. Haiyang Xuebao, 2020, 42(2): 134−142. doi: 10.3969/j.issn.0253-4193.2020.02.014
|
[13] |
Jia Xiaoyan, Ji Qiyan, Han Lei, et al. Prediction of sea surface temperature in the East China Sea based on LSTM neural network[J]. Remote Sensing, 2022, 14(14): 3300. doi: 10.3390/rs14143300
|
[14] |
张宇, 许大志, 俞胜宾, 等. 基于多尺度深度学习对南海海表温度预报的研究[J]. 海洋学报, 2024, 46(5): 27−36. doi: 10.12284/hyxb2024034
Zhang Yu, Xu Dazhi, Yu Shengbin, et al. Forecast of sea surface temperature in the South China Sea based on multi-scale deep learning model[J]. Haiyang Xuebao, 2024, 46(5): 27−36. doi: 10.12284/hyxb2024034
|
[15] |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014: 2672−2680.
|
[16] |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139−144. doi: 10.1145/3422622
|
[17] |
Deng Jiaxiang, Deng Yong, Cheong K H. Combining conflicting evidence based on Pearson correlation coefficient and weighted graph[J]. International Journal of Intelligent Systems, 2021, 36(12): 7443−7460. doi: 10.1002/int.22593
|
[18] |
Ibrahim A, Ismail A, Juahir H, et al. Water quality modelling using principal component analysis and artificial neural network[J]. Marine Pollution Bulletin, 2023, 187: 114493. doi: 10.1016/j.marpolbul.2022.114493
|
[19] |
Mai Gengchen, Xuan Yao, Zuo Wenyun, et al. Sphere2Vec: a general-purpose location representation learning over a spherical surface for large-scale geospatial predictions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 202: 439−462. doi: 10.1016/j.isprsjprs.2023.06.016
|
[20] |
Scarselli F, Gori M, Tsoi A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61−80. doi: 10.1109/TNN.2008.2005605
|
[21] |
Wang Xiaoqi, Yen K, Hu Yifan, et al. DeepGD: a deep learning framework for graph drawing using GNN[J]. IEEE Computer Graphics and Applications, 2021, 41(5): 32−44. doi: 10.1109/MCG.2021.3093908
|
[22] |
Wang Dujuan, Zhu Jiacheng, Yin Yunqiang, et al. Dynamic travel time prediction with spatiotemporal features: using a GNN-based deep learning method[J]. Annals of Operations Research, 2024, 340(1): 571−591. doi: 10.1007/s10479-023-05260-2
|
[23] |
Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[C]//5th International Conference on Learning Representations. Toulon, 2017. (查阅网上资料, 未找到本条文献母体文献及出版信息, 请确认)
|
[24] |
Derr T, Ma Yao, Tang Jiliang. Signed graph convolutional networks[C]//2018 IEEE International Conference on Data Mining (ICDM). Singapore: IEEE, 2018: 929−934.
|
[25] |
Polamuri S R, Srinivas D K, Mohan D A K. Multi-model generative adversarial network hybrid prediction algorithm (MMGAN-HPA) for stock market prices prediction[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(9): 7433−7444. doi: 10.1016/j.jksuci.2021.07.001
|
[26] |
Zhang Jianguang, Zhang Xuyang, Yang Jianfeng, et al. Deep LSTM and GAN based short-term load forecasting method at the zone level[C]//2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). Fukuoka: IEEE, 2020: 613−618.
|
[27] |
Festag S, Spreckelsen C. Medical multivariate time series imputation and forecasting based on a recurrent conditional Wasserstein GAN and attention[J]. Journal of Biomedical Informatics, 2023, 139: 104320. doi: 10.1016/j.jbi.2023.104320
|
[28] |
Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein GANS[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017: 5769−5779.
|
[29] |
Zhang Chenhan, Yu J J Q, Liu Yi. Spatial-temporal graph attention networks: a deep learning approach for traffic forecasting[J]. IEEE Access, 2019, 7: 166246−166256. doi: 10.1109/ACCESS.2019.2953888
|
[30] |
Fang Fang, Zhang Pengpeng, Zhou Bo, et al. Atten-GAN: pedestrian trajectory prediction with GAN based on attention mechanism[J]. Cognitive Computation, 2022, 14(6): 2296−2305. doi: 10.1007/s12559-022-10029-z
|
[31] |
Bynagari N B. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[J]. Asian Journal of Applied Science and Engineering, 2019, 8(1): 25−34. doi: 10.18034/ajase.v8i1.9
|
[32] |
Zhang Kang, Zhong Guoqiang, Dong Junyu, et al. Stock market prediction based on generative adversarial network[J]. Procedia Computer Science, 2019, 147: 400−406. doi: 10.1016/j.procs.2019.01.256
|
[33] |
Zha Wenshu, Liu Yuping, Wan Yujin, et al. Forecasting monthly gas field production based on the CNN-LSTM model[J]. Energy, 2022, 260: 124889. doi: 10.1016/j.energy.2022.124889
|
[34] |
Yu Jingxin, Zhang Xin, Xu Linlin, et al. A hybrid CNN-GRU model for predicting soil moisture in maize root zone[J]. Agricultural Water Management, 2021, 245: 106649. doi: 10.1016/j.agwat.2020.106649
|