Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 11
Dec.  2020
Turn off MathJax
Article Contents
Zhang Yu,Zhou Yan,Tao Bangyi, et al. Identification of abnormal buoy data based on time series correlation analysis method[J]. Haiyang Xuebao,2020, 42(11):131–141 doi: 10.3969/j.issn.0253-4193.2020.11.013
Citation: Zhang Yu,Zhou Yan,Tao Bangyi, et al. Identification of abnormal buoy data based on time series correlation analysis method[J]. Haiyang Xuebao,2020, 42(11):131–141 doi: 10.3969/j.issn.0253-4193.2020.11.013

Identification of abnormal buoy data based on time series correlation analysis method

doi: 10.3969/j.issn.0253-4193.2020.11.013
  • Received Date: 2019-09-28
  • Rev Recd Date: 2020-06-22
  • Available Online: 2020-12-04
  • Publish Date: 2020-11-25
  • The identification of abnormal marine ecological buoy data is the key to ensure the quality of buoy data. In this study, we found that the gradual abnormal data type is different from the traditional jump abnormal data through analysis of the coastal buoy data in Zhejiang for many years. With a single parameter analysis method, it is difficult to work out accurately the new gradual abnormal data type of stable and gradual deviation from the normal data. Therefore, multiple parameters correlation coefficient method is proposed based on the relationships between pH, dissolved oxygen and chlorophyll a on the condition of that the correlation between two parameters is stable or even consistent at a certain time series. There are two simple statistical parameters of the cross-correlation coefficient of 8-day time window (R8 d) and the difference of R8 dR) in this method. Those could be used to automatically detect the gradual abnormal buoy data and do very well. The multiple parameters correlation coefficient method provides a new idea for the gradual abnormal data identification, and also improves the automatic monitoring capability of marine ecological buoy abnormal data.
  • loading
  • [1]
    黄谟涛, 翟国君, 王瑞, 等. 海洋测量异常数据的检测[J]. 测绘学报, 1999, 28(3): 269−277. doi: 10.3321/j.issn:1001-1595.1999.03.015

    Huang Motao, Zhai Guojun, Wang Rui, et al. The detection of abnormal data in marine survey[J]. Acta Geodaetica et Cartographica Sinica, 1999, 28(3): 269−277. doi: 10.3321/j.issn:1001-1595.1999.03.015
    [2]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 17378.2−2007, 海洋监测规范 第2部分: 数据处理与分析质量控制[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB 17378.2−2007, The specification for marine monitoring—Part 2: data processing and quality control of analysis[S]. Beijing: China Standard Press, 2008.
    [3]
    Sivareddy S, Paul A, Sluka T, et al. The pre-Argo ocean reanalyses may be seriously affected by the spatial coverage of moored buoys[J]. Scientific Reports, 2017, 7: 46685. doi: 10.1038/srep46685
    [4]
    Dong Guozhong, Chen Dongying. Quality control algorithm for marine meteorological data based on interest degree association rules[J]. Journal of Coastal Research, 2019, 94(S1): 173−176.
    [5]
    黄冬梅, 康培红, 张明华, 等. 一种基于ULDB的海洋环境监测数据管理系统[P]. 中国: 201110004234. X, 2011−06−01.

    Huang Dongmei, Kang Peihong, Zhang Minghua, et al. ULDB (Databases with Uncertainty and Lineage)-based marine environmental monitored data management system[P]. CN: 201110004234. X, 2011−06−01.
    [6]
    ARGO. Argo quality control management, Version 2.4, Argo data management[Z]. 2009.
    [7]
    D'Ortenzio F, Thierry V, Eldin G, et al. White book on oceanic autonomous platforms for biogeochemical studies: instrumentation and measure (PABIM), version 1.3[Z]. 2010.
    [8]
    Fu Wenju, Huang Guanwen, Yang Yuanxi, et al. Multi-GNSS combined precise point positioning using additional observations with opposite weight for real-time quality control[J]. Remote Sensing, 2019, 11(3): 311. doi: 10.3390/rs11030311
    [9]
    Cosoli S, Grcic B, De Vos S, et al. Improving data quality for the Australian high frequency ocean radar network through real-time and delayed-mode quality-control procedures[J]. Remote Sensing, 2018, 10(9): 1476. doi: 10.3390/rs10091476
    [10]
    Duan Boheng, Zhang Weimin, Yang Xiaofeng, et al. Assimilation of typhoon wind field retrieved from scatterometer and SAR based on the Huber norm quality control[J]. Remote Sensing, 2017, 9(10): 987. doi: 10.3390/rs9100987
    [11]
    Fichot C G, Downing B D, Bergamaschi B A, et al. High-resolution remote sensing of water quality in the San Francisco Bay–Delta Estuary[J]. Environmental Science & Technology, 2016, 50(2): 573−583.
    [12]
    Schuckmann K, Garau B, Wehde H, et al. MyOcean: real time quality control of temperature and salinity measurements[R]. 2010.
    [13]
    张明, 张韧, 王辉赞, 等. 基于Argo浮标数据的Aquarius数据产品质量评估[J]. 海洋信息, 2015(3): 21−28. doi: 10.3969/j.issn.1005-1724.2015.03.005

    Zhang Ming, Zhang Ren, Wang Zanhui, et al. Quality evaluation of Aquarius data products based on Argo buoy data[J]. Marine Information, 2015(3): 21−28. doi: 10.3969/j.issn.1005-1724.2015.03.005
    [14]
    史静涛. 海洋环境实时观测数据质量控制方法研究与软件实现[D]. 天津: 国家海洋技术中心, 2010.

    Shi Jingtao. The data quality control method research and software realization for marine environment real-time observation[D]. Tianjin: National Marine Technology Center, 2010.
    [15]
    Ishii M, Fukuda Y, Hirahara S, et al. Accuracy of global upper ocean heat content estimation expected from present observational data sets[J]. SOLA, 2017, 13: 163−167. doi: 10.2151/sola.2017-030
    [16]
    Shulski M, Cooper S, Roebke G, et al. The Nebraska Mesonet: technical overview of an automated state weather network[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(11): 2189−2200. doi: 10.1175/JTECH-D-17-0181.1
    [17]
    Jiang Jingang, Sun Lu, Fan Zhongya, et al. Outlier detection and sequence reconstruction in continuous time series of ocean observation data based on difference analysis and the Dixon criterion[J]. Limnology and Oceanography Methods, 2017, 15(11): 916−927. doi: 10.1002/lom3.10212
    [18]
    窦文洁, 蒋锦刚, 周斌, 等. 基于多参数差分相关的海洋时序观测数据滤波算法[J]. 海洋学报, 2012, 34(5): 50−58.

    Dou Wenjie, Jiang Jingang, Zhou Bin, et al. An algorithm for the difference correlation filter for multi-parameter marine timing observation data[J]. Haiyang Xuebao, 2012, 34(5): 50−58.
    [19]
    Oguma S, Nagata Y. Skewed water temperature occurrence frequency in the sea off Sanriku, Japan, and intrusion of the pure Kuroshio water[J]. Journal of Oceanography, 2002, 58(6): 787−796. doi: 10.1023/A:1022862911129
    [20]
    Mardia K V, Kent J T, Bibby J M. Multivariate analysis[J]. Probability and Mathematical Statistics, 1979, 37(1): 123−131.
    [21]
    Wei W W S. Multivariate Time Series Analysis and Applications[M]. New York: John Wiley & Sons Inc., 2019.
    [22]
    Bartholomew D J. Time series analysis forecasting and control[J]. Journal of the Operational Research Society, 1971, 22(2): 199−201. doi: 10.1057/jors.1971.52
    [23]
    Olson D A, Riedel T P, Long R, et al. Time series analysis of wintertime O3 and NOx formation using vector autoregressions[J]. Atmospheric Environment, 2019, 218: 116988. doi: 10.1016/j.atmosenv.2019.116988
    [24]
    Tsay R S. Time series model specification in the presence of outliers[J]. Journal of the American Statistical Association, 1986, 81(393): 132−141. doi: 10.1080/01621459.1986.10478250
    [25]
    Razi M A, Athappilly K. A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models[J]. Expert Systems with Applications, 2005, 29(1): 65−74. doi: 10.1016/j.eswa.2005.01.006
    [26]
    Martínez-Álvarez F, Troncoso A, Riquelme J C, et al. Discovery of motifs to forecast outlier occurrence in time series[J]. Pattern Recognition Letters, 2011, 32(12): 1652−1665. doi: 10.1016/j.patrec.2011.05.002
    [27]
    Cucina D, Di Salvatore A, Protopapas M K. Outliers detection in multivariate time series using genetic algorithms[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 132: 103−110. doi: 10.1016/j.chemolab.2014.01.007
    [28]
    Tsay R S. Outliers, level shifts, and variance changes in time series[J]. Journal of Forecasting, 1988, 7(1): 1−20. doi: 10.1002/for.3980070102
    [29]
    Harlé F, Chatelain F, Gouy-Pailler C, et al. Bayesian model for multiple change-points detection in multivariate time series[J]. IEEE Transactions on Signal Processing, 2016, 64(16): 4351−4362. doi: 10.1109/TSP.2016.2566609
    [30]
    Boto K G, Bunt J S. Dissolved oxygen and pH relationships in northern Australian mangrove waterways[J]. Limnology and Oceanography, 1981, 26(6): 1176−1178. doi: 10.4319/lo.1981.26.6.1176
    [31]
    Wallace J, Champagne P, Hall G. Time series relationships between chlorophyll-a, dissolved oxygen, and pH in three facultative wastewater stabilization ponds[J]. Environmental Science: Water Research & Technology, 2016, 2(6): 1032−1040.
    [32]
    谢群, 张瑜斌, 孙省利, 等. 流沙湾溶解氧的分布特征及其相关因素的探讨[J]. 环境科学与技术, 2009, 32(9): 39−44. doi: 10.3969/j.issn.1003-6504.2009.09.010

    Xie Qun, Zhang Yubin, Sun Shengli, et al. Distribution characteristics of dissolved oxygen and correlating factors analysis in Liusha Bay[J]. Environmental Science & Technology, 2009, 32(9): 39−44. doi: 10.3969/j.issn.1003-6504.2009.09.010
    [33]
    Hollinger D Y, Richardson A D. Uncertainty in eddy covariance measurements and its application to physiological models[J]. Tree Physiology, 2005, 25(7): 873−885. doi: 10.1093/treephys/25.7.873
    [34]
    刘增宏, 许建平, 修义瑞, 等. 参考数据集对Argo剖面浮标盐度观测资料校正的影响[J]. 海洋预报, 2006, 23(4): 1−12. doi: 10.3969/j.issn.1003-0239.2006.04.001

    Liu Zenghong, Xu Jianping, Xiu Yirui, et al. The effect of reference dataset on calibration of Argo profiling float salinity data[J]. Marine Forecasts, 2006, 23(4): 1−12. doi: 10.3969/j.issn.1003-0239.2006.04.001
    [35]
    王辉赞, 张韧, 王桂华, 等. Argo浮标温盐剖面观测资料的质量控制技术[J]. 地球物理学报, 2012, 55(2): 577−588.

    Wang Zanhui, Zhang Ren, Wang Guihua, et al. Quality control of Argo temperature and salinity observation profiles[J]. Chinese Journal of Geophysics, 2012, 55(2): 577−588.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views (348) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return