Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 11
Dec.  2020
Turn off MathJax
Article Contents
Jiang Wei,Yang Haodan,Wu Xingyuan, et al. Research progress of environmental influence and coral record of submarine groundwater discharge in coral reefs[J]. Haiyang Xuebao,2020, 42(11):1–11 doi: 10.3969/j.issn.0253-4193.2020.11.001
Citation: Jiang Wei,Yang Haodan,Wu Xingyuan, et al. Research progress of environmental influence and coral record of submarine groundwater discharge in coral reefs[J]. Haiyang Xuebao,2020, 42(11):1–11 doi: 10.3969/j.issn.0253-4193.2020.11.001

Research progress of environmental influence and coral record of submarine groundwater discharge in coral reefs

doi: 10.3969/j.issn.0253-4193.2020.11.001
  • Received Date: 2019-10-31
  • Rev Recd Date: 2020-02-06
  • Available Online: 2020-12-03
  • Publish Date: 2020-11-25
  • Submarine groundwater discharge (SGD) is a significant driving factor of marine chemistry and coastal ecosystem evolution, and plays a very important role in the development and degradation of coral reefs due to supplying large loads of chemicals into the coastal ocean. This paper reviews the characteristics of SGD in coral reefs and the potential ecological environment effect. Meanwhile, the northern South China Sea was taken as an example to explore the dominant factors controlling the development and degradation of coral reefs, as well as the potential effects. Results show that the research on the long time serial variations of dynamic changes of SGD in coral reefs, especially in fringing reef areas, is quite weak; it is feasible to reconstruct the historical patterns of the annual fluxes of SGD in local seas by using the geochemical coral skeletons proxies; SGD is likely to be an important factor contributing to the degradation of coral reefs in the northern South China Sea, nevertheless SGD has received limited concerns and attentions from both governmental agencies and the public. The future researches should focus on the high-resolution coral records of SGD and chemicals it carries in coral reefs, explore the key processes and mechanisms of effects from SGD on the development and degradation of coral reefs, and then offer scientific and reasonable advice.
  • loading
  • [1]
    余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学: 地球科学, 2012, 55(8): 1217−1229. doi: 10.1007/s11430-012-4449-5

    Yu Kefu. Coral reefs in the South China Sea: Their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012, 55(8): 1217−1229. doi: 10.1007/s11430-012-4449-5
    [2]
    Spalding M, Burke L, Wood S A, et al. Mapping the global value and distribution of coral reef tourism[J]. Marine Policy, 2017, 82: 104−113. doi: 10.1016/j.marpol.2017.05.014
    [3]
    Moberg F, Folke C. Ecological goods and services of coral reef ecosystems[J]. Ecological Economics, 1999, 29(2): 215−233. doi: 10.1016/S0921-8009(99)00009-9
    [4]
    Ban S S, Graham N A, Connolly S R. Evidence for multiple stressor interactions and effects on coral reefs[J]. Global Change Biology, 2014, 20(3): 681−697. doi: 10.1111/gcb.12453
    [5]
    Lough J M. 10th Anniversary Review: a changing climate for coral reefs[J]. Journal of Environmental Monitoring, 2008, 10(1): 21−29. doi: 10.1039/B714627M
    [6]
    Carpenter K E, Abrar M, Aeby G, et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts[J]. Science, 2008, 321(5888): 560−563. doi: 10.1126/science.1159196
    [7]
    Cinner J E, Huchery C, MacNeil M A, et al. Bright spots among the world’s coral reefs[J]. Nature, 2016, 535(7612): 416−419. doi: 10.1038/nature18607
    [8]
    Goatley C H R, Bonaldo R M, Fox R J, et al. Sediments and herbivory as sensitive indicators of coral reef degradation[J]. Ecology and Society, 2016, 21(1): 29. doi: 10.5751/ES-08334-210129
    [9]
    Bruno J F, Valdivia A. Coral reef degradation is not correlated with local human population density[J]. Scientific Reports, 2016, 6: 29778. doi: 10.1038/srep29778
    [10]
    李淑, 余克服. 珊瑚礁白化研究进展[J]. 生态学报, 2007, 27(5): 2059−2069. doi: 10.3321/j.issn:1000-0933.2007.05.047

    Li Shu, Yu Kefu. Recent development in coral reef bleaching research[J]. Acta Ecologica Sinica, 2007, 27(5): 2059−2069. doi: 10.3321/j.issn:1000-0933.2007.05.047
    [11]
    施祺, 赵美霞, 黄玲英, 等. 三亚鹿回头岸礁区人类活动及其对珊瑚礁的影响[J]. 热带地理, 2010, 30(5): 486−490, 509. doi: 10.3969/j.issn.1001-5221.2010.05.006

    Shi Qi, Zhao Meixia, Huang Lingying, et al. Human activities and impacts on coral reef at the Luhuitou fringing reef, Sanya[J]. Tropical Geography, 2010, 30(5): 486−490, 509. doi: 10.3969/j.issn.1001-5221.2010.05.006
    [12]
    贾国东, 黄国伦. 海底地下水排放: 重要的海岸带陆海相互作用过程[J]. 地学前缘, 2005, 12(S1): 29−35.

    Jia Guodong, Huang Guolun. Submarine groundwater discharge: An important land-ocean interaction in the coastal zone[J]. Earth Science Frontiers, 2005, 12(S1): 29−35.
    [13]
    李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6): 636−646.

    Li Hailong, Wang Xuejing. Submarine groundwater discharge: a review[J]. Advances in Earth Science, 2015, 30(6): 636−646.
    [14]
    Moore W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science, 2010, 2: 59−88. doi: 10.1146/annurev-marine-120308-081019
    [15]
    Fabricius K E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis[J]. Marine Pollution Bulletin, 2005, 50(2): 125−146. doi: 10.1016/j.marpolbul.2004.11.028
    [16]
    Prouty N G, Swarzenski P W, Fackrell J K, et al. Groundwater-derived nutrient and trace element transport to a nearshore Kona coral ecosystem: Experimental mixing model results[J]. Journal of Hydrology: Regional Studies, 2017, 11: 166−177. doi: 10.1016/j.ejrh.2015.12.058
    [17]
    Wang Guizhi, Jing Wenping, Wang Shuling, et al. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system[J]. Environmental Science & Technology, 2014, 48(22): 13069−13075.
    [18]
    Wang Guizhi, Wang Shuling, Wang Zhangyong, et al. Tidal variability of nutrients in a coastal coral reef system influenced by groundwater[J]. Biogeosciences, 2018, 15(4): 997−1009. doi: 10.5194/bg-15-997-2018
    [19]
    Nelson C E, Donahue M J, Dulaiova H, et al. Fluorescent dissolved organic matter as a multivariate biogeochemical tracer of submarine groundwater discharge in coral reef ecosystems[J]. Marine Chemistry, 2015, 177: 232−243. doi: 10.1016/j.marchem.2015.06.026
    [20]
    Cyronak T, Santos I R, Erler D V, et al. Drivers of pCO2 variability in two contrasting coral reef lagoons: The influence of submarine groundwater discharge[J]. Global Biogeochemical Cycles, 2014, 28(4): 398−414. doi: 10.1002/2013GB004598
    [21]
    Street J H, Knee K L, Grossman E E, et al. Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawai'i[J]. Marine Chemistry, 2008, 109(3/4): 355−376.
    [22]
    Garrison G H, Glenn C R, McMurtry G M. Measurement of submarine groundwater discharge in Kahana Bay, O'ahu, Hawai'i[J]. Limnology and Oceanography, 2003, 48(2): 920−928. doi: 10.4319/lo.2003.48.2.0920
    [23]
    Richardson C M, Dulai H, Popp B N, et al. Submarine groundwater discharge drives biogeochemistry in two Hawaiian reefs[J]. Limnology and Oceanography, 2007, 62(S1): S348−S363.
    [24]
    Horta-Puga G, Carriquiry J D. Coral Ba/Ca molar ratios as a proxy of precipitation in the northern Yucatan Peninsula, Mexico[J]. Applied Geochemistry, 2012, 27(8): 1579−1586. doi: 10.1016/j.apgeochem.2012.05.008
    [25]
    Prouty N G, Jupiter S D, Field M E, et al. Coral proxy record of decadal-scale reduction in base flow from Moloka'i, Hawaii[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(12): 1−18.
    [26]
    Jiang W, Yu K F, Song Y X, et al. Coral geochemical record of submarine groundwater discharge back to 1870 in the northern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 507: 30−38. doi: 10.1016/j.palaeo.2018.05.045
    [27]
    Yu Kefu, Zhao Jianxin, Shi Qi, et al. U-series dating of dead Porites corals in the South China sea: Evidence for episodic coral mortality over the past two centuries[J]. Quaternary Geochronology, 2006, 1(2): 129−141. doi: 10.1016/j.quageo.2006.06.005
    [28]
    Xu Shendong, Yu Kefu, Tao Shichen, et al. Evidence for the thermal bleaching of Porites corals from 4.0 ka B. P. in the Northern South China Sea[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(1): 79−94. doi: 10.1002/2017JG004091
    [29]
    Webster J M, Braga J C, Humblet M, et al. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30 000 years[J]. Nature Geoscience, 2018, 11(6): 426−432. doi: 10.1038/s41561-018-0127-3
    [30]
    Kamenos N A, Hennige S J. Reconstructing four centuries of temperature-induced coral bleaching on the great barrier reef[J]. Frontiers in Marine Science, 2018, 5: 283. doi: 10.3389/fmars.2018.00283
    [31]
    朱传华. 关于我省珊瑚礁生态系统保护与管理的建议[EB/OL]. (2018–04–08) [2019–10–30]. http://www.hainan.gov.cn/zxtadata-7894.html, 2018.

    Zhu Chuanhua. Suggestions on the protection and management of coral reef ecosystem in Hainan Province[EB/OL]. (2018–04–08) [2019–10–30]. http://www.hainan.gov.cn/zxtadata-7894.html, 2018.
    [32]
    Halfar J, Godinez-Orta L, Riegl B, et al. Living on the edge: high-latitude Porites carbonate production under temperate eutrophic conditions[J]. Coral Reefs, 2005, 24(4): 582−592. doi: 10.1007/s00338-005-0029-x
    [33]
    Clark T R, Chen Xuefei, Leonard N D, et al. Episodic coral growth in China’s subtropical coral communities linked to broad-scale climatic change[J]. Geology, 2018, 47(1): 79−82.
    [34]
    陈天然, 余克服, 施祺, 等. 大亚湾石珊瑚群落近25年的变化及其对2008年极端低温事件的响应[J]. 科学通报, 2009, 54(12): 2107−2117.

    Chen Tianran, Yu Kefu, Shi Qi, et al. Twenty-five years of change in scleractinian coral communities of Daya Bay (northern South China Sea) and its response to the 2008 AD extreme cold climate event[J]. Chinese Science Bulletin, 2009, 54(12): 2107−2117.
    [35]
    Zhao Meixia, Yu Kefu, Zhang Qiaomin, et al. Long-term decline of a fringing coral reef in the Northern South China Sea[J]. Journal of Coastal Research, 2012, 28(5): 1088−1099. doi: 10.2112/JCOASTRES-D-10-00172.1
    [36]
    柯东胜, 彭晓娟, 吴玲铃, 等. 大亚湾典型生态系统状况调查与分析[J]. 海洋环境科学, 2009, 28(4): 421−425. doi: 10.3969/j.issn.1007-6336.2009.04.016

    Ke Dongsheng, Peng Xiaojuan, Wu Lingling, et al. Survey and analysis of typical ecosystem status in Daya Bay[J]. Marine Environmental Science, 2009, 28(4): 421−425. doi: 10.3969/j.issn.1007-6336.2009.04.016
    [37]
    梁文, 黎广钊. 涠洲岛珊瑚礁分布特征与环境保护的初步研究[J]. 环境科学研究, 2002, 15(6): 5−7, 16. doi: 10.3321/j.issn:1001-6929.2002.06.002

    Liang Wen, Li Guangzhao. Preliminary study on characteristics of coral reef distribution and environmental protection in Weizhou Island[J]. Research of Environmental Sciences, 2002, 15(6): 5−7, 16. doi: 10.3321/j.issn:1001-6929.2002.06.002
    [38]
    陈天然, 郑兆勇, 莫少华, 等. 涠洲岛滨珊瑚中的生物侵蚀及其环境指示意义[J]. 科学通报, 2013, 58(17): 1574−1582. doi: 10.1360/972011-2531

    Chen Tianran, Zheng Zhaoyong, Mo Shaohua, et al. Bioerosion in Porites corals at Weizhou Island and its environmental significance[J]. Chinese Science Bulletin, 2013, 58(17): 1574−1582. doi: 10.1360/972011-2531
    [39]
    Hughes T, Szmant A M, Steneck R, et al. Algal blooms on coral reefs: what are the causes?[J]. Limnology and Oceanography, 1999, 44(6): 1583−1586. doi: 10.4319/lo.1999.44.6.1583
    [40]
    Szmant A M. Nutrient enrichment on coral reefs: Is it a major cause of coral reef decline?[J]. Estuaries, 2002, 25(4): 743−766. doi: 10.1007/BF02804903
    [41]
    国家海洋局南海分局. 2016年南海区海洋环境状况公报[EB/OL]. (2017-06-20) [2019-10-30]. http://scs.mnr.gov.cn/scsb/gbytj/201706/8f92b735703b4dac816c571ed3d08a24.shtml.

    South China Sea Branch, State Oceanic Administration. The bulletin of marine environment state in South China Sea [EB/OL]. (2017-06-20) [2019-10-30]. http://scs.mnr.gov.cn/scsb/gbytj/201706/8f92b735703b4dac816c571ed3d08a24.shtml.
    [42]
    Mosley L M, Aalbersberg W G L. Nutrient levels in sea and river water along the ‘Coral Coast’ of Viti Levu, Fiji[J]. Journal of Natural Applied Sciences, 2003, 21: 35−40.
    [43]
    Reopanichkul P, Carter R W, Worachananant S, et al. Wastewater discharge degrades coastal waters and reef communities in southern Thailand[J]. Marine Environmental Research, 2010, 69(5): 287−296. doi: 10.1016/j.marenvres.2009.11.011
    [44]
    Phongsuwan N, Chankong A, Yamarunpatthana C, et al. Status and changing patterns on coral reefs in Thailand during the last two decades[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2013, 96: 19−24.
    [45]
    Wear S L, Thurber R V. Sewage pollution: mitigation is key for coral reef stewardship[J]. Annals of the New York Academy of Sciences, 2016, 1355(1): 15−30.
    [46]
    Dadhich A P, Nadaoka K. Analysis of Terrestrial discharge from agricultural watersheds and its impact on nearshore and offshore reefs in fiji[J]. Journal of Coastal Research, 2012, 28(5): 1225−1235. doi: 10.2112/JCOASTRES-D-11-00149.1
    [47]
    Cyronak T, Schulz K G, Santos I R, et al. Enhanced acidification of global coral reefs driven by regional biogeochemical feedbacks[J]. Geophysical Research Letters, 2014, 41(15): 5538−5546.
    [48]
    Cyronak T, Santos I R, Erler D V, et al. Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands)[J]. Biogeosciences, 2013, 10(4): 2467−2480.
    [49]
    Boehm A B, Paytan A, Shellenbarger G G, et al. Composition and flux of groundwater from a California beach aquifer: Implications for nutrient supply to the surf zone[J]. Continental Shelf Research, 2006, 26(2): 269−282.
    [50]
    Slomp C P, Van Cappellen P. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact[J]. Journal of Hydrology, 2004, 295(1/4): 64−86.
    [51]
    Santos I R, Niencheski F, Burnett W, et al. Tracing anthropogenically driven groundwater discharge into a coastal lagoon from southern Brazil[J]. Journal of Hydrology, 2008, 353(3/4): 275−293.
    [52]
    Wang Guizhi, Wang Shuiling, Wang Zhangyong, et al. Significance of submarine groundwater discharge in nutrient budgets in tropical Sanya Bay, China[J]. Sustainability, 2018, 10(2): 380.
    [53]
    Burnett W C, Bokuniewicz H, Huettel M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003, 66(1/2): 3−33. doi: 10.1023/B:BIOG.0000006066.21240.53
    [54]
    Moosdorf N, Stieglitz T, Waska H, et al. Submarine groundwater discharge from tropical islands: a review[J]. Grundwasser, 2015, 20(1): 53−67. doi: 10.1007/s00767-014-0275-3
    [55]
    Reading M J, Santos I R, Maher D T, et al. Shifting nitrous oxide source/sink behaviour in a subtropical estuary revealed by automated time series observations[J]. Estuarine, Coastal and Shelf Science, 2017, 194: 66−76. doi: 10.1016/j.ecss.2017.05.017
    [56]
    Santos I R, De Weys J, Tait D R, et al. The contribution of groundwater discharge to nutrient exports from a coastal catchment: post-flood seepage increases estuarine N/P ratios[J]. Estuaries and Coasts, 2013, 36(1): 56−73. doi: 10.1007/s12237-012-9561-4
    [57]
    Tait D R, Maher D T, Sanders C J, et al. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves[J]. Geochimica et Cosmochimica Acta, 2017, 200: 295−309. doi: 10.1016/j.gca.2016.12.024
    [58]
    Moore W S, Sarmiento J L, Key R M. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean[J]. Nature Geoscience, 2008, 1(5): 309−311. doi: 10.1038/ngeo183
    [59]
    Moore W S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments[J]. Nature, 1996, 380(6575): 612−614. doi: 10.1038/380612a0
    [60]
    Kwon E Y, Kim G, Primeau F, et al. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model[J]. Geophysical Research Letters, 2014, 41(23): 8438−8444. doi: 10.1002/2014GL061574
    [61]
    Richardson C M, Dulai H, Popp B N, et al. Submarine groundwater discharge drives biogeochemistry in two Hawaiian reefs[J]. Limnology and Oceanography, 2017, 62(S1): S348−S363. doi: 10.1002/lno.10654
    [62]
    Drupp P, De Carlo E H, Mackenzie F T, et al. Nutrient inputs, phytoplankton response, and CO2 variations in a semi-enclosed subtropical embayment, Kaneohe Bay, Hawaii[J]. Aquatic Geochemistry, 2011, 17(4/5): 473−498.
    [63]
    Dimova N T, Swarzenski P W, Dulaiova H, et al. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water-seatwater interface in two Hawaiian groundwater systems[J]. Journal of Geophysical Research: Oceans, 2012, 117(C2): C02012.
    [64]
    Lubarsky K A, Silbiger N J, Donahue M J. Effects of submarine groundwater discharge on coral accretion and bioerosion on two shallow reef flats[J]. Limnology and Oceanography, 2018, 63(4): 1660−1676. doi: 10.1002/lno.10799
    [65]
    Boehm A B, Shellenbarger G G, Paytan A. Groundwater discharge:  potential association with fecal indicator bacteria in the surf zone[J]. Environmental Science & Technology, 2004, 38(13): 3558−3566.
    [66]
    Lee Y W, Kim G. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer[J]. Estuarine, Coastal and Shelf Science, 2007, 71(1/2): 309−317.
    [67]
    Lee Y W, Hwang D W, Kim G, et al. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea[J]. Science of the Total Environment, 2009, 407(9): 3181−3188. doi: 10.1016/j.scitotenv.2008.04.013
    [68]
    Tse K C, Jiao J J. Estimation of submarine groundwater discharge in Plover Cove, Tolo Harbour, Hong Kong by 222Rn[J]. Marine Chemistry, 2008, 111(3/4): 160−170.
    [69]
    Hwang D W, Lee Y W, Kim G. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea[J]. Limnology and Oceanography, 2005, 50(5): 1393−1403. doi: 10.4319/lo.2005.50.5.1393
    [70]
    Rocha C, Wilson J, Scholten J, et al. Retention and fate of groundwater-borne nitrogen in a coastal bay (Kinvara Bay, Western Ireland) during summer[J]. Biogeochemistry, 2015, 125(2): 275−299. doi: 10.1007/s10533-015-0116-1
    [71]
    Le Grand H M, Fabricius K E. Relationship of internal macrobioeroder densities in living massive Porites to turbidity and chlorophyll on the Australian Great Barrier Reef[J]. Coral Reefs, 2011, 30(1): 97−107. doi: 10.1007/s00338-010-0670-x
    [72]
    Lapointe B E. Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida[J]. Limnology and Oceanography, 1997, 42(5part2): 1119−1131. doi: 10.4319/lo.1997.42.5_part_2.1119
    [73]
    Santos I R, Glud R N, Maher D, et al. Diel coral reef acidification driven by porewater advection in permeable carbonate sands, Heron Island, Great Barrier Reef[J]. Geophysical Research Letters, 2011, 38(3): L03604.
    [74]
    DeCarlo T M, Cohen A L, Barkley H C, et al. Coral macrobioerosion is accelerated by ocean acidification and nutrients[J]. Geology, 2015, 43(1): 7−10. doi: 10.1130/G36147.1
    [75]
    Lee J, Kim G. Dependence of coastal water pH increases on submarine groundwater discharge off a volcanic island[J]. Estuarine, Coastal and Shelf Science, 2015, 163: 15−21. doi: 10.1016/j.ecss.2015.05.037
    [76]
    Silbiger N J, Nelson C E, Remple K, et al. Nutrient pollution disrupts key ecosystem functions on coral reefs[J]. Proceedings of the Royal Society B: Biological Sciences, 2018, 285(1880): 20172718. doi: 10.1098/rspb.2017.2718
    [77]
    Amato D W, Bishop J M, Glenn C R, et al. Impact of submarine groundwater discharge on marine water quality and reef biota of Maui[J]. PLoS One, 2016, 11(11): e0165825. doi: 10.1371/journal.pone.0165825
    [78]
    Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. Coral reefs under rapid climate change and ocean acidification[J]. Science, 2007, 318(5857): 1737−1742. doi: 10.1126/science.1152509
    [79]
    Oberle F K J, Storlazzi C D, Cheriton O M, et al. Physicochemical controls on zones of higher coral stress where black band disease occurs at Mākua reef, Kaua'i, Hawai'i[J]. Frontiers in Marine Science, 2019, 6: 552. doi: 10.3389/fmars.2019.00552
    [80]
    Cardenas M B, Zamora P B, Siringan F P, et al. Linking regional sources and pathways for submarine groundwater discharge at a reef by electrical resistivity tomography, 222Rn, and salinity measurements[J]. Geophysical Research Letters, 2010, 37(16): L16401.
    [81]
    Blanco A C, Watanabe A, Nadaoka K, et al. Estimation of nearshore groundwater discharge and its potential effects on a fringing coral reef[J]. Marine Pollution Bulletin, 2011, 62(4): 770−785. doi: 10.1016/j.marpolbul.2011.01.005
    [82]
    Paytan A, Shellenbarger G G, Street J H, et al. Submarine groundwater discharge: An important source of new inorganic nitrogen to coral reef ecosystems[J]. Limnology and Oceanography, 2006, 51(1): 343−348. doi: 10.4319/lo.2006.51.1.0343
    [83]
    Stieglitz T. Submarine groundwater discharge into the near-shore zone of the Great Barrier Reef, Australia[J]. Marine Pollution Bulletin, 2005, 51(1/4): 51−59.
    [84]
    McMahon A, Santos I R. Nitrogen enrichment and speciation in a coral reef lagoon driven by groundwater inputs of bird guano[J]. Journal of Geophysical Research: Oceans, 2017, 122(9): 7218−7236. doi: 10.1002/2017JC012929
    [85]
    Lapointe B E, Langton R, Bedford B J, et al. Land-based nutrient enrichment of the Buccoo Reef Complex and fringing coral reefs of Tobago, West Indies[J]. Marine Pollution Bulletin, 2010, 60(3): 334−343. doi: 10.1016/j.marpolbul.2009.10.020
    [86]
    Crook E D, Cohen A L, Rebolledo-Vieyra M, et al. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(27): 11044−11049. doi: 10.1073/pnas.1301589110
    [87]
    Crook E D, Potts D, Rebolledo-Vieyra M, et al. Calcifying coral abundance near low-pH springs: implications for future ocean acidification[J]. Coral Reefs, 2012, 31(1): 239−245. doi: 10.1007/s00338-011-0839-y
    [88]
    Erler D V, Shepherd B O, Linsley B K, et al. Coral skeletons record increasing agriculture-related groundwater nitrogen inputs to a south pacific reef over the past century[J]. Geophysical Research Letters, 2018, 45(16): 8370−8378. doi: 10.1029/2018GL078656
    [89]
    Gonneea M E, Mulligan A E, Charette M A. Seasonal cycles in radium and barium within a subterranean estuary: Implications for groundwater derived chemical fluxes to surface waters[J]. Geochimica et Cosmochimica Acta, 2013, 119: 164−177. doi: 10.1016/j.gca.2013.05.034
    [90]
    Shaw T J, Moore W S, Kloepfer J, et al. The flux of barium to the coastal waters of the southeastern USA: the importance of submarine groundwater discharge[J]. Geochimica et Cosmochimica Acta, 1998, 62(18): 3047−3054. doi: 10.1016/S0016-7037(98)00218-X
    [91]
    Santos I R, Burnett W C, Misra S, et al. Uranium and barium cycling in a salt wedge subterranean estuary: The influence of tidal pumping[J]. Chemical Geology, 2011, 287(1/2): 114−123.
    [92]
    Gonneea M E, Charette M A, Liu Qian, et al. Trace element geochemistry of groundwater in a karst subterranean estuary (Yucatan Peninsula, Mexico)[J]. Geochimica et Cosmochimica Acta, 2014, 132: 31−49. doi: 10.1016/j.gca.2014.01.037
    [93]
    Kim I, Kim G. Large fluxes of rare earth elements through submarine groundwater discharge (SGD) from a volcanic island, Jeju, Korea[J]. Marine Chemistry, 2011, 127(1/4): 12−19.
    [94]
    Kim I, Kim G. Submarine groundwater discharge as a main source of rare earth elements in coastal waters[J]. Marine Chemistry, 2014, 16: 11−17.
    [95]
    Johannesson K H, Burdige D J. Balancing the global oceanic neodymium budget: Evaluating the role of groundwater[J]. Earth and Planetary Science Letters, 2007, 253(1/2): 129−142.
    [96]
    Johannesson K H, Palmore C D, Fackrell J, et al. Rare earth element behavior during groundwater–seawater mixing along the Kona Coast of Hawaii[J]. Geochimica et Cosmochimica Acta, 2017, 198: 229−258. doi: 10.1016/j.gca.2016.11.009
    [97]
    Chevis D A, Johannesson K H, Burdige D J, et al. Submarine groundwater discharge of rare earth elements to a tidally-mixed estuary in Southern Rhode Island[J]. Chemical Geology, 2015, 397: 128−142. doi: 10.1016/j.chemgeo.2015.01.013
    [98]
    Chevis D A, Johannesson K H, Burdige D J, et al. Rare earth element cycling in a sandy subterranean estuary in Florida, USA[J]. Marine Chemistry, 2015, 176: 34−50. doi: 10.1016/j.marchem.2015.07.003
    [99]
    Prouty N G, Field M E, Stock J D, et al. Coral Ba/Ca records of sediment input to the fringing reef of the southshore of Moloka'i, Hawai'i over the last several decades[J]. Marine Pollution Bulletin, 2010, 60(10): 1822−1835. doi: 10.1016/j.marpolbul.2010.05.024
    [100]
    Carriquiry J D, Horta-Puga G. The Ba/Ca record of corals from the Southern Gulf of Mexico: Contributions from land-use changes, fluvial discharge and oil-drilling muds[J]. Marine Pollution Bulletin, 2010, 60(9): 1625−1630. doi: 10.1016/j.marpolbul.2010.06.007
    [101]
    Nguyen A D, Zhao J X, Feng Y X, et al. Impact of recent coastal development and human activities on Nha Trang Bay, Vietnam: evidence from a Porites lutea geochemical record[J]. Coral Reefs, 2013, 32(1): 181−193.
    [102]
    Liu Yi, Peng Zicheng, Wei Gangjian, et al. Interannual variation of rare earth element abundances in corals from northern coast of the South China Sea and its relation with sea-level change and human activities[J]. Marine Environmental Research, 2011, 71(1): 62−69. doi: 10.1016/j.marenvres.2010.10.003
    [103]
    Song Yinxian, Yu Kefu, Zhao Jianxin, et al. Past 140-year environmental record in the northern South China Sea: evidence from coral skeletal trace metal variations[J]. Environmental Pollution, 2014, 185: 97−106.
    [104]
    Jiang Wei, Yu Kefu, Song Yinxian, et al. Coral trace metal of natural and anthropogenic influences in the northern South China Sea[J]. Science of the Total Environment, 2017, 607−608: 195−203. doi: 10.1016/j.scitotenv.2017.06.105
    [105]
    Fallon S J, White J C, McCulloch M T. Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea[J]. Geochimica et Cosmochimica Acta, 2002, 66(1): 45−62.
    [106]
    McCulloch M, Fallon S, Wyndham T, et al. Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement[J]. Nature, 2003, 421(6924): 727−730. doi: 10.1038/nature01361
    [107]
    Fleitmann D, Dunbar R B, McCulloch M, et al. East African soil erosion recorded in a 300 year old coral colony from Kenya[J]. Geophysical Research Letters, 2007, 34(4): L04401.
    [108]
    Santos I R, Erler D, Tait D, et al. Breathing of a coral cay: Tracing tidally driven seawater recirculation in permeable coral reef sediments[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12010.
    [109]
    Cable J E, Burnett W C, Chanton J P, et al. Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222[J]. Earth and Planetary Science Letters, 1996, 144(3/4): 591−604.
    [110]
    林武辉, 余克服, 王英辉, 等. 珊瑚礁区沉积物的极低放射性水平特征与成因[J]. 科学通报, 2018, 63(21): 2173−2183.

    Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Extremely low radioactivity in marine sediment of coral reefs and its mechanism[J]. Chinese Science Bulletin, 2018, 63(21): 2173−2183.
    [111]
    林武辉, 余克服, 王英辉, 等. 罕见的地表低辐射水平区域: 珊瑚礁区[J]. 辐射防护, 2018, 38(4): 287−292.

    Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Unusual low radiation area on the surface of the earth: coral reefs[J]. Radiation Protection, 2018, 38(4): 287−292.
    [112]
    林武辉, 余克服, 邓芳芳, 等. 南海现代珊瑚骨骼中放射性核素特征指纹[J]. 中国环境科学, 2019, 39(10): 4279−4289. doi: 10.3969/j.issn.1000-6923.2019.10.030

    Lin Wuhui, Yu Kefu, Deng Fangfang, et al. Fingerprints of radionuclides in modern coral skeletons in the South China Sea[J]. China Environmental Science, 2019, 39(10): 4279−4289. doi: 10.3969/j.issn.1000-6923.2019.10.030
    [113]
    Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Radioactive level of coral reefs in the South China Sea[J]. Marine Pollution Bulletin, 2019, 142: 43−53.
    [114]
    Erler D V, Wang Xingchen, Sigman D M, et al. Nitrogen isotopic composition of organic matter from a 168 year-old coral skeleton: Implications for coastal nutrient cycling in the Great Barrier Reef Lagoon[J]. Earth and Planetary Science Letters, 2016, 434: 161−170.
    [115]
    Ren Haojia, Chen Yichi, Wang X T, et al. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef[J]. Science, 2017, 356(6339): 749−752.
    [116]
    Wang X T, Sigman D M, Cohen A L, et al. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals[J]. Earth and Planetary Science Letters, 2016, 441: 125−132. doi: 10.1016/j.jpgl.2016.02.032
    [117]
    Lowe R J, Falter J L. Oceanic forcing of coral reefs[J]. Annual Review of Marine Science, 2015, 7: 43−66. doi: 10.1146/annurev-marine-010814-015834
    [118]
    Rivett M O, Buss S R, Morgan P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215−4232. doi: 10.1016/j.watres.2008.07.020
    [119]
    Montoya J P, Carpenter E J, Capone D G. Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic[J]. Limnology and Oceanography, 2002, 47(6): 1617−1628. doi: 10.4319/lo.2002.47.6.1617
    [120]
    Yoshikawa C, Makabe A, Shiozaki T, et al. Nitrogen isotope ratios of nitrate and N* anomalies in the subtropical South Pacific[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(5): 1439−1448.
    [121]
    Prouty N G, Cohen A, Yates K K, et al. Vulnerability of coral reefs to bioerosion from land-based sources of pollution[J]. Journal of Geophysical Research: Oceans, 2017, 122(12): 9319−9331. doi: 10.1002/2017JC013264
    [122]
    Mutchler T, Dunton K H, Townsend-Small A, et al. Isotopic and elemental indicators of nutrient sources and status of coastal habitats in the Caribbean Sea, Yucatan Peninsula, Mexico[J]. Estuarine, Coastal and Shelf Science, 2007, 74(3): 449−457.
    [123]
    Baker D M, Rodríguez-Martínez R E, Fogel M L. Tourism’s nitrogen footprint on a Mesoamerican coral reef[J]. Coral Reefs, 2013, 32(3): 691−699. doi: 10.1007/s00338-013-1040-2
    [124]
    Baker D M, Jordán-Dahlgren E, Maldonado M A, et al. Sea fan corals provide a stable isotope baseline for assessing sewage pollution in the Mexican Caribbean[J]. Limnology and Oceanography, 2010, 55(5): 2139−2149. doi: 10.4319/lo.2010.55.5.2139
    [125]
    Johnson A G, Glenn C R, Burnett W C, et al. Aerial infrared imaging reveals large nutrient-rich groundwater inputs to the ocean[J]. Geophysical Research Letters, 2008, 35(15): L15606.
    [126]
    Guo Jing, Yu Kefu, Wang Yinghui, et al. Nutrient distribution in coral reef degraded areas within Sanya Bay, South China Sea[J]. Journal of Coastal Research, 2017, 33(5): 1148−1160.
    [127]
    Saha N, Rodriguez-Ramirez A, Nguyen A D, et al. Seasonal to decadal scale influence of environmental drivers on Ba/Ca and Y/Ca in coral aragonite from the southern Great Barrier Reef[J]. Science of the Total Environment, 2018, 639: 1099−1109.
    [128]
    Mallela J, Lewis S E, Croke B. Coral skeletons provide historical evidence of phosphorus runoff on the great barrier reef[J]. PLoS One, 2013, 8(9): e75663.
    [129]
    Brodie J E, Lewis S E, Collier C J, et al. Setting ecologically relevant targets for river pollutant loads to meet marine water quality requirements for the Great Barrier Reef, Australia: A preliminary methodology and analysis[J]. Ocean & Coastal Management, 2017, 143: 136−147.
    [130]
    生态环境部. 2017中国近岸海域生态环境质量公报[EB/OL]. (2018–08–08) [2019–10–30]. http://www.h2o-china.com/news/278915.html.

    Ministry of Ecological and Environment. Bulletin of ecological and environmental quality in china’s coastal waters in 2017[EB/OL]. (2018–08–08) [2019–10–30]. http://www.h2o-china.com/news/278915.html.
    [131]
    国家海洋局. 2016年中国海洋环境状况公报[EB/OL]. (2017–03–22) [2019–10–30]. http://gc.mnr.gov.cn/201806/t20180619_1797645.html.

    State Oceanic Administration. The state of marine environment bulletin of China in 2016[EB/OL]. (2017–03–22) [2019–10–30]. http://gc.mnr.gov.cn/201806/t20180619_1797645.html.
    [132]
    Wiegner T N, Mokiao-Lee A U, Johnson E E. Identifying nitrogen sources to thermal tide pools in Kapoho, Hawai'i, U. S. A, using a multi-stable isotope approach[J]. Marine Pollution Bulletin, 2016, 103(1/2): 63−71.
    [133]
    Knee K L, Paytan A. Submarine groundwater discharge: a source of nutrients, metals, and pollutants to the coastal ocean[M]//Wolanski E, McLusky D. Treatise on Estuarine and Coastal Science. Waltham: Academic Press, 2011: 205−233.
    [134]
    Andersson A J, Gledhill D. Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification[J]. Annual Review of Marine Science, 2013, 5: 321−348.
    [135]
    Pandolfi J M, Connolly S R, Marshall D J, et al. Projecting coral reef futures under global warming and ocean acidification[J]. Science, 2011, 333(6041): 418−422.
    [136]
    Silbiger N J, Guadayol Ò, Thomas F I M, et al. A novel μCT analysis reveals different responses of bioerosion and secondary accretion to environmental variability[J]. PLoS One, 2016, 11(4): e0153058.
    [137]
    Wu Zijun, Zhou Huaiyang, Zhang Shuai, et al. Using 222Rn to estimate submarine groundwater discharge (SGD) and the associated nutrient fluxes into Xiangshan Bay, East China Sea[J]. Marine Pollution Bulletin, 2013, 73(1): 183−191. doi: 10.1016/j.marpolbul.2013.05.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (198) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return