Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
Ren Xiaoming,Liu Yang,Xu Binduo, et al. Ecosystem structure in the Haizhou Bay and adjacent waters based on Ecopath model[J]. Haiyang Xuebao,2020, 42(6):101–109 doi: 10.3969/j.issn.0253-4193.2020.06.012
Citation: Ren Xiaoming,Liu Yang,Xu Binduo, et al. Ecosystem structure in the Haizhou Bay and adjacent waters based on Ecopath model[J]. Haiyang Xuebao,2020, 42(6):101–109 doi: 10.3969/j.issn.0253-4193.2020.06.012

Ecosystem structure in the Haizhou Bay and adjacent waters based on Ecopath model

doi: 10.3969/j.issn.0253-4193.2020.06.012
  • Received Date: 2019-07-17
  • Rev Recd Date: 2019-10-10
  • Available Online: 2020-11-18
  • Publish Date: 2020-06-25
  • Based on the data obtained from bottom trawl investigation in the Haizhou Bay and adjacent waters in 2018, a mass-balance model for the Haizhou Bay ecosystem was constructed by Ecopath with Ecosim software, consisting of 26 functional groups. Using Ecopath model, we evaluated the trophic structure, trophic impact relationship and ecosystem characters of the Haizhou Bay to provide a theoretical basis for the implementation of ecosystem-based fisheries management. The result showed that in this ecosystem trophic levels of functional groups varied from 1.00 to 4.19, and the range of fish trophic level was wide, ranging from 3.22 to 4.19. Phytoplankton and molluscs were in important nutritional positions in the ecosystem facing with the pressure from both the primary producers and predators. The evaluation of the ecosystem structure and function showed that the total primary production/total respiration (TPP/TR) was 7.096, total primary production /total biomass (TPP/B) was 56.866, the connectance index (CI) and system omnivory index (SOI) were 0.429 and 0.204, indicating that the Haizhou Bay ecosystem was in an immature, unstable state and was susceptible to external disturbances. Through the study of the Haizhou Bay and its adjacent waters ecosystem model, we analyzed the nutrient structure and phylogenetic status of the sea area, which would provide a theoretical basis for the sustainable utilization and scientific management of fishery resources in the Haizhou Bay.
  • loading
  • [1]
    章守宇, 张焕君, 焦俊鹏, 等. 海州湾人工鱼礁海域生态环境的变化[J]. 水产学报, 2006, 30(4): 475−480.

    Zhang Shouyu, Zhang Huanjun, Jiao Junpeng, et al. Change of ecological environment of artificial reef waters in Haizhou Bay[J]. Journal of Fisheries of China, 2006, 30(4): 475−480.
    [2]
    王冠钰, 郭佩芳. 基于生态系统的渔业管理方式(EBFM)在我国的适用性[J]. 海洋环境科学, 2014, 33(5): 792−797.

    Wang Guanyu, Guo Peifang. The adaptability of ecosystem-based fisheries management (EBFM) in China[J]. Marine Environmental Science, 2014, 33(5): 792−797.
    [3]
    Christensen V, Walters C J, Pauly D. Ecopath with Ecosim: a user’s guide[R]. Penang, Malaysia: Fisheries Centre, University of British Columbia, 2005.
    [4]
    Christensen V, Walters C J. Ecopath with Ecosim: methods, capabilities and limitations[J]. Ecological Modelling, 2004, 172(2/4): 109−139.
    [5]
    Polovina J J. Model of a coral reef ecosystem: I. The ECOPATH model and its application to French Frigate Shoals[J]. Coral Reefs, 1984, 3(1): 1−11. doi: 10.1007/BF00306135
    [6]
    Ulanowicz R E. Growth and Development: Ecosystem Phenomenology[M]. New York: Springer Verlag, 1986.
    [7]
    Pauly D, Christensen V, Walters C. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries[J]. ICES Journal of Marine Science, 2000, 57(3): 697−706. doi: 10.1006/jmsc.2000.0726
    [8]
    Link J, Col L, Guida V, et al. Response of balanced network models to large-scale perturbation: Implications for evaluating the role of small pelagics in the Gulf of Maine[J]. Ecological Modelling, 2009, 220(3): 351−369. doi: 10.1016/j.ecolmodel.2008.10.009
    [9]
    Guo C B, Ye S W, Lek S, et al. The need for improved fishery management in a shallow macrophytic lake in the Yangtze River basin: evidence from the food web structure and ecosystem analysis[J]. Ecological Modelling, 2013, 267: 138−147. doi: 10.1016/j.ecolmodel.2013.07.013
    [10]
    Han D Y, Xue Y, Zhang C L, et al. A mass balanced model of trophic structure and energy flows of a semi-closed marine ecosystem[J]. Acta Oceanologica Sinica, 2017, 36(10): 60−69. doi: 10.1007/s13131-017-1071-6
    [11]
    袁健美, 张虎, 贲成恺, 等. 海洲湾大型底栖动物群落组成及次级生产力[J]. 海洋渔业, 2018, 40(1): 19−26. doi: 10.3969/j.issn.1004-2490.2018.01.003

    Yuan Jianmei, Zhang Hu, Ben Chengkai, et al. Macrobenthic community composition and it’s secondary productivity in the Haizhou Bay[J]. Marine Fisheries, 2018, 40(1): 19−26. doi: 10.3969/j.issn.1004-2490.2018.01.003
    [12]
    Tong Ling, Tang Qisheng, Pauly D. A preliminary approach on mass-balance ecopath model of the Bohai Sea[J]. Chinese Journal of Applied Ecology, 2000, 11(3): 435−440.
    [13]
    林群, 王俊, 李忠义, 等. 黄河口邻近海域生态系统能量流动与三疣梭子蟹增殖容量估算[J]. 应用生态学报, 2015, 26(11): 3523−3531.

    Lin Qun, Wang Jun, Li Zhongyi, et al. Assessment of ecosystem energy flow and carrying capacity of swimming crab enhancement in the Yellow River Estuary and adjacent waters[J]. Chinese Journal of Applied Ecology, 2015, 26(11): 3523−3531.
    [14]
    王腾, 张贺, 张虎, 等. 基于营养通道模型的海州湾中国明对虾生态容纳量[J]. 中国水产科学, 2016, 23(4): 965−975.

    Wang Teng, Zhang He, Zhang Hu, et al. Ecological carrying capacity of Chinese shrimp stock enhancement in Haizhou Bay of East China based on Ecopath model[J]. Journal of Fishery Sciences of China, 2016, 23(4): 965−975.
    [15]
    张硕, 王腾, 符小明, 等. 连云港海州湾渔业生态修复水域生态系统能量流动模型初探[J]. 海洋环境科学, 2015, 34(1): 42−47.

    Zhang Shuo, Wang Teng, Fu Xiaoming, et al. A primary study on the energy flow in the ecosystem of fishery ecological restoration area in Haizhou Bay, Lianyungang[J]. Marine Environmental Science, 2015, 34(1): 42−47.
    [16]
    欧阳力剑, 郭学武. 东、黄海主要鱼类Q/B值与种群摄食量研究[J]. 渔业科学进展, 2010, 31(2): 23−29. doi: 10.3969/j.issn.1000-7075.2010.02.004

    Ouyang Lijian, Guo Xuewu. Studies on the Q/B values and food consumption of major fishes in the East China Sea and the Yellow Sea[J]. Progress in Fishery Sciences, 2010, 31(2): 23−29. doi: 10.3969/j.issn.1000-7075.2010.02.004
    [17]
    徐超, 王思凯, 赵峰, 等. 基于Ecopath模型的长江口生态系统营养结构和能量流动研究[J]. 海洋渔业, 2018, 40(3): 309−318. doi: 10.3969/j.issn.1004-2490.2018.03.006

    Xu Chao, Wang Sikai, Zhao Feng, et al. Trophic structure and energy flow of the Yangtze Estuary ecosystem based on the analysis with Ecopath model[J]. Marine Fisheries, 2018, 40(3): 309−318. doi: 10.3969/j.issn.1004-2490.2018.03.006
    [18]
    隋昊志, 薛莹, 任一平, 等. 海州湾鱼类生态类群的研究[J]. 中国海洋大学学报, 2017, 47(12): 59−71.

    Sui Haozhi, Xue Ying, Ren Yiping, et al. Studies on the ecological groups of fish communities in Haizhou Bay, China[J]. Periodical of Ocean University of China, 2017, 47(12): 59−71.
    [19]
    邓景耀, 孟田湘, 任胜民. 渤海鱼类食物关系的初步研究[J]. 生态学报, 1986, 6(4): 356−364.

    Deng Jingyao, Meng Tianxiang, Ren Shengmin. Food web of fishes in Bohai Sea[J]. Acta Ecologica Sinica, 1986, 6(4): 356−364.
    [20]
    程济生, 朱金声. 黄海主要经济无脊椎动物摄食特征及其营养层次的研究[J]. 海洋学报, 1997, 19(6): 102−108.

    Cheng Jisheng, Zhu Jinsheng. Study on feeding characteristics and nutrient level of main economic invertebrates in the Yellow Sea[J]. Haiyang Xuebao, 1997, 19(6): 102−108.
    [21]
    杨纪明. 渤海鱼类的食性和营养级研究[J]. 现代渔业信息, 2001, 16(10): 10−19.

    Yang Jiming. A study on food and trophic levels of Baohai Sea fish[J]. Modern Fisheries Information, 2001, 16(10): 10−19.
    [22]
    张波. 东、黄海带鱼的摄食习性及随发育的变化[J]. 海洋水产研究, 2004, 25(2): 6−12.

    Zhang Bo. Feeding habits and ontogenetic diet shift of hairtail fish (Trichiurus lepturus) in East China Sea and Yellow Sea[J]. Marine Fisheries Research, 2004, 25(2): 6−12.
    [23]
    徐开达, 金海卫, 卢占晖, 等. 东海区短鳄齿鱼摄食生态的初步研究[J]. 海洋科学, 2012, 36(7): 79−88.

    Xu Kaida, Jin Haiwei, Lu Zhanhui, et al. Preliminary study on feeding ecology of Champsodon snyderi in East China Sea region[J]. Marine Sciences, 2012, 36(7): 79−88.
    [24]
    杨纪明, 谭雪静. 渤海3种头足类食性分析[J]. 海洋科学, 2000, 24(4): 53−55. doi: 10.3969/j.issn.1000-3096.2000.04.017

    Yang Jiming, Tan Xuejing. Food analysis of three cephalopod species in the Bohai Sea[J]. Marine Sciences, 2000, 24(4): 53−55. doi: 10.3969/j.issn.1000-3096.2000.04.017
    [25]
    杨纪明. 渤海涟虫类和软体动物幼虫食性的观察[J]. 海洋科学, 1998(6): 36−38.

    Yang Jiming. Observations on food of cumaceans and post larvae of mollusks in the Bohai Sea[J]. Marine Sciences, 1998(6): 36−38.
    [26]
    杨德渐, 孙世春, 宋微波, 等. 海洋无脊椎动物学[M]. 青岛: 中国海洋大学出版社, 1999.

    Yang Dejian, Sun Shichun, Song Weibo, et al. Marine Invertebrate[M]. Qingdao: China Ocean University Press, 1999.
    [27]
    邓景耀, 赵传铟. 海洋渔业生物学[M]. 北京: 农业出版社, 1991.

    Deng Jingyao, Zhao Chuanyin. Marine Fishery Biology[M]. Beijing: China Agriculture Press, 1991.
    [28]
    赵文. 水生生物学[M]. 北京: 中国农业出版社, 2005.

    Zhao Wen. Hydrobiology[M]. Beijing: China Agriculture Press, 2005.
    [29]
    Leontief W W. The structure of the U.S. economy[J]. Scientific American, 1965, 212(4): 25−35. doi: 10.1038/scientificamerican0465-25
    [30]
    Ulanowicz R E, Puccia C J. Mixed trophic impacts in ecosystems[J]. Coenoses, 1990, 5(1): 7−16.
    [31]
    Libralato S, Christensen V, Pauly D. A method for identifying keystone species in food web models[J]. Ecological Modelling, 2006, 195(3/4): 153−171.
    [32]
    Morissette L. Complexity, cost and quality of ecosystem models and their impact on resilience: a comparative analysis, with emphasis on marine mammals and the Gulf of St. Lawrence[D]. Vancouver: University of British Columbia, 2007.
    [33]
    任晓明, 徐宾铎, 张崇良, 等. 海州湾及邻近海域鱼类群落的营养功能群及其动态变化[J]. 中国水产科学, 2019, 26(1): 141−150. doi: 10.3724/SP.J.1118.2019.18149

    Ren Xiaoming, Xu Binduo, Zhang Chongliang, et al. The composition of and variations in the trophic guilds of fish assemblages in Haizhou Bay and adjacent waters[J]. Journal of Fishery Sciences of China, 2019, 26(1): 141−150. doi: 10.3724/SP.J.1118.2019.18149
    [34]
    Odum E P. The strategy of ecosystem development[J]. Science, 1969, 164(3877): 262−270. doi: 10.1126/science.164.3877.262
    [35]
    林群, 王俊, 李忠义, 等. 黄河口邻近水域贝类生态容量[J]. 应用生态学报, 2018, 29(9): 3131−3138.

    Lin Qun, Wang Jun, Li Zhongyi, et al. Ecological carrying capacity of shellfish in the Yellow River Estuary and its adjacent waters[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 3131−3138.
    [36]
    王在峰. 海州湾海洋特别保护区生态恢复适宜性评估[D]. 南京: 南京师范大学, 2011.

    Wang Zaifeng. Research on ecological recovery suitability assessment for Haizhou Bay special marine[D]. Nanjing: Nanjing Normal University, 2011.
    [37]
    Bitterlich G, Gnaiger E. Phytoplanktivorous or omnivorous fish? Digestibility of zooplankton by silvercarp, Hypophthalmichthys molitrix (Val.)[J]. Aquaculture, 1984, 40(3): 261−263. doi: 10.1016/0044-8486(84)90194-7
    [38]
    Michener R M, Kaufman L. Stable isotope ratios as tracers in marine aquatic food webs[M]//Michener R M, Lajtha K. Stable Isotopes in Ecology and Environmental Science. Oxford: Blackwell Publishing, 1994: 138−186.
    [39]
    Gu B, Schell D M, Huang X, et al. Stable isotope evidence for dietary overlap between two planktivorous fishes in aquaculture ponds[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53(12): 2814−2818. doi: 10.1139/f96-242
    [40]
    Fry B. Stable Isotope Ecology[M]. New York: Springer, 2006.
    [41]
    Cerling T E, Ehleringer J R, Harris J M. Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353(1365): 159−171. doi: 10.1098/rstb.1998.0198
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article views (551) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return