| Citation: | Wang Guosong,Wang Xidong,Hou Min, et al. Research on application of LSTM deep neural network on historical observation data and reanalysis data for sea surface wind speed forecasting[J]. Haiyang Xuebao,2020, 42(1):67–77,doi:10.3969/j.issn.0253−4193.2020.01.008 |
| [1] |
陈德花, 刘铭, 苏卫东, 等. BP人工神经网络在MM5预报福建沿海大风中的释用[J]. 暴雨灾害, 2010, 29(3): 263−267. doi: 10.3969/j.issn.1004-9045.2010.03.010
Chen Dehua, Liu Ming, Su Weidong, et al. Interpretation and application of BP artificial neural network in MM5 model forecasting gale for coastal regions of Fujian province[J]. Torrential Rain and Disasters, 2010, 29(3): 263−267. doi: 10.3969/j.issn.1004-9045.2010.03.010
|
| [2] |
刘伟东, 扈海波, 程丛兰, 等. 灰色关联度方法在大风和暴雨灾害损失评估中的应用[J]. 气象科技, 2007, 35(4): 563−566. doi: 10.3969/j.issn.1671-6345.2007.04.023
Liu Weidong, Hu Haibo, Cheng Conglan, et al. Application of grey correlation degree to disaster loss evaluation of strong wind and heavy rainfall[J]. Meteorological Science and Technology, 2007, 35(4): 563−566. doi: 10.3969/j.issn.1671-6345.2007.04.023
|
| [3] |
曲海涛, 刘学萍. 黄渤海大风统计分析和预报方法[J]. 辽宁气象, 2002, 18(4): 11−12.
Qu Haitao, Liu Xueping. Statistical analysis and forecasting method of gale in Huang-Bohai Sea[J]. Liaoning Meteorological Quarterly, 2002, 18(4): 11−12.
|
| [4] |
吴庆丽, 尹福杰, 陈敏, 等. “一一·二四”海难渤海风场的数值模拟[J]. 自然灾害学报, 2002, 11(1): 85−90. doi: 10.3969/j.issn.1004-4574.2002.01.014
Wu Qingli, Yin Fujie, Chen Min, et al. Wind field numerical simulation for a great shipwreck in Bohai Sea on November 24, 1999[J]. Journal of Natural Disasters, 2002, 11(1): 85−90. doi: 10.3969/j.issn.1004-4574.2002.01.014
|
| [5] |
尹尽勇, 刘涛, 张增海, 等. 冬季黄渤海大风天气与渔船风损统计分析[J]. 气象, 2009, 35(6): 90−95. doi: 10.7519/j.issn.1000-0526.2009.06.012
Yin Jinyong, Liu Tao, Zhang Zenghai, et al. Statistical analysis of the weather system types causing strong winds and fishery boat windage loss accidents in Bohai Sea and Yellow Sea in winter[J]. Meteorological Monthly, 2009, 35(6): 90−95. doi: 10.7519/j.issn.1000-0526.2009.06.012
|
| [6] |
Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks[C]//Advances in Neural Information Processing Systems 27 (NIPS). 2014: 1-5.
|
| [7] |
Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]//European Conference on Computer. Cham: Springer, 2014.
|
| [8] |
Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[J]. Journal of Mechine Learing Research, 2010(1): 315-323.
|
| [9] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: Curran Associates Inc, 2012.
|
| [10] |
Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82−97. doi: 10.1109/MSP.2012.2205597
|
| [11] |
Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211−252. doi: 10.1007/s11263-015-0816-y
|
| [12] |
Erhan D, Bengio Y, Courville A, et al. Why does unsupervised pre-training help deep learning?[J]. Journal of Machine Learning Research, 2010, 11(3): 625−660.
|
| [13] |
Schmidhuber J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85−117. doi: 10.1016/j.neunet.2014.09.003
|
| [14] |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278−2324. doi: 10.1109/5.726791
|
| [15] |
Hinton G E, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504−507. doi: 10.1126/science.1127647
|
| [16] |
Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484−489. doi: 10.1038/nature16961
|
| [17] |
Hochreiter S, Schmidhuber J. LSTM can solve hard long time lag problems[C]//Proceedings of the 9th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 1997.
|
| [18] |
Gers F A, Schmidhuber J, Cummins F. Learning to Forget: Continual Prediction with LSTM[J]. Neural Computation, 2014, 12(10): 2451−2471.
|
| [19] |
Graves A. Long short-term memory[M]//Supervised Sequence Labelling with Recurrent Neural Networks. Berlin Heidelberg: Springer, 2012.
|
| [20] |
Graves A. Supervised Sequence Labelling with Recurrent Neural Networks[M]. Berlin Heidelberg: Springer, 2012.
|
| [21] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735−1780. doi: 10.1162/neco.1997.9.8.1735
|
| [22] |
Cheng Lilin, Zang Haixiang, Ding Tao, et al. Ensemble recurrent neural network based probabilistic wind speed forecasting approach[J]. Energies, 2018, 11(8): 1958. doi: 10.3390/en11081958
|
| [23] |
Kumar N K, Savitha R, Al Mamun A. Regional ocean wave height prediction using sequential learning neural networks[J]. Ocean Engineering, 2017, 129: 605−612. doi: 10.1016/j.oceaneng.2016.10.033
|
| [24] |
Wei Jun, Jiang Guoqing, Liu Xin. Parameterization of typhoon-induced ocean cooling using temperature equation and machine learning algorithms: an example of typhoon Soulik (2013)[J]. Ocean Dynamics, 2017, 67(9): 1179−1193. doi: 10.1007/s10236-017-1082-z
|
| [25] |
Haque A U, Mandal P, Meng Julian, et al. Wind speed forecast model for wind farm based on a hybrid machine learning algorithm[J]. International Journal of Sustainable Energy, 2015, 34(1): 38−51. doi: 10.1080/14786451.2013.826224
|
| [26] |
Klein B, Wolf L, Afek Y. A dynamic convolutional layer for short rangeweather prediction[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015.
|
| [27] |
Kambekar A R, Deo M C. Real time wave forecasting using wind time history and genetic programming[J]. Ocean Engineering, 2014, 5(4): 249−259.
|
| [28] |
Najeebullah, Zameer A, Khan A, et al. Machine learning based short term wind power prediction using a hybrid learning model[J]. Computers & Electrical Engineering, 2014, 45: 122−133.
|
| [29] |
Shi Xingjian, Chen Zhourong, Wang Hao, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]//Advances in Neural Information Processing Systems 28 (NIPS). 2015: 802-810.
|
| [30] |
Jiang Guoqing, Xu Jing, Wei Jun. A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models[J]. Geophysical Research Letters, 2018, 45(8): 3706−3716. doi: 10.1002/2018GL077004
|
| [31] |
王辉, 刘娜, 逄仁波, 等. 全球海洋预报与科学大数据[J]. 科学通报, 2015, 60(5/6): 479−484.
Wang Hui, Liu Na, Pang Renbo, et al. Global ocean forecasting and scientific big data[J]. Chinese Science Bulletin, 2015, 60(5/6): 479−484.
|
| [32] |
Alexandre E, Cuadra L, Nieto-Borge J C, et al. A hybrid genetic algorithm-extreme learning machine approach for accurate significant wave height reconstruction[J]. Ocean Modelling, 2015, 92: 115−123. doi: 10.1016/j.ocemod.2015.06.010
|
| [33] |
Casas-Prat M, Wang Xiaolan, Sierra J P. A physical-based statistical method for modeling ocean wave heights[J]. Ocean Modelling, 2014, 73: 59−75. doi: 10.1016/j.ocemod.2013.10.008
|
| [34] |
Jain P, Deo M C, Latha G, et al. Real time wave forecasting using wind time history and numerical model[J]. Ocean Modelling, 2011, 36(1/2): 26−39.
|
| [35] |
Wang X L, Feng Yang, Swail V R. Changes in global ocean wave heights as projected using multimodel CMIP5 simulations[J]. Geophysical Research Letters, 2014, 41(3): 1026−1034. doi: 10.1002/2013GL058650
|
| [36] |
李泽椿, 毕宝贵, 金荣花, 等. 近10年中国现代天气预报的发展与应用[J]. 气象学报, 2014, 72(6): 1069−1078.
Li Zechun, Bi Baogui, Jin Ronghua, et al. The development and application of the modern weather fore-cast in China for the recent 10 years[J]. Acta Meteorologica Sinica, 2014, 72(6): 1069−1078.
|
| [37] |
Warner T T. Numerical Weather and Climate Prediction[M]. Cambridge: Cambridge University Press, 2011.
|
| [38] |
Bauer P, Thorpe A, Brunet G. The quiet revolution of numerical weather prediction[J]. Nature, 2015, 525(7567): 47−55. doi: 10.1038/nature14956
|
| [39] |
Li Dele, Storch H, Geyer B. High-resolution wind hindcast over the Bohai Sea and the Yellow Sea in East Asia: Evaluation and wind climatology analysis[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(1): 111−129. doi: 10.1002/2015JD024177
|
| [40] |
Zhang Dalin, Fritsch J M. A case study of the sensitivity of numerical simulation of mesoscale convective systems to varying initial conditions[J]. Monthly Weather Review, 1986, 114(12): 2418−2431. doi: 10.1175/1520-0493(1986)114<2418:ACSOTS>2.0.CO;2
|
| [41] |
杨悦, 高山红. 黄海海雾 WRF 数值模拟中垂直分辨率的敏感性研究[J]. 气象学报, 2016, 74(6): 974−988.
Yang Yue, Gao Shanhong. Sensitivity study of vertical resolution in WRF numerical simulation for sea fog over the Yellow Sea[J]. Acta Meteorologica Sinica, 2016, 74(6): 974−988.
|
| [42] |
Cohen A E, Cavallo S M, Coniglio M C, et al. A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U. S. cold season severe weather environments[J]. Weather and Forecasting, 2015, 30(3): 591−612. doi: 10.1175/WAF-D-14-00105.1
|
| [43] |
Draxl C, Hahmann A N, Peña A, et al. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes[J]. Wind Energy, 2014, 17(1): 39−55. doi: 10.1002/we.1555
|
| [44] |
Peña A, Hahmann A N, Hasager C B, et al. South Baltic wind atlas: south Baltic offshore wind energy regions project[J]. Risø Dtu National Laboratory for Sustainable Energy, 2011.
|
| [45] |
常蕊, 朱蓉, 周荣卫, 等. 高分辨率合成孔径雷达卫星反演风场资料在中国近海风能资源评估中的应用研究[J]. 气象学报, 2014, 72(3): 606−613.
Chang Rui, Zhu Rong, Zhou Rongwei, et al. An application of high resolution SAR wind retrievals to off-shore wind resources assessment in China[J]. Acta Meteorologica Sinica, 2014, 72(3): 606−613.
|
| [46] |
Durán-Rosal A M, Hervás-Martínez C, Tallón-Ballesteros A J, et al. Massive missing data reconstruction in ocean buoys with evolutionary product unit neural networks[J]. Ocean Engineering, 2016, 117: 292−301. doi: 10.1016/j.oceaneng.2016.03.053
|
| [47] |
Nitsure S P, Londhe S N, Khare K C. Wave forecasts using wind information and genetic programming[J]. Ocean Engineering, 2012, 54(4): 61−69.
|
| [48] |
Malekmohamadi I, Ghiassi R, Yazdanpanah M J. Wave hindcasting by coupling numerical model and artificial neural networks[J]. Ocean Engineering, 2008, 35(3/4): 417−425.
|
| [49] |
Gao Shanhong, Wu Wei, Zhu Leilei, et al. Detection of nighttime sea fog/stratus over the Huang-hai Sea using MTSAT-1R IR data[J]. Acta Oceanologica Sinica, 2009, 28(2): 23−35.
|
| [50] |
王国松, 高山红, 吴彬贵, 等. 我国近海风能资源分布特征分析[J]. 海洋科学进展, 2014, 32(1): 21−29. doi: 10.3969/j.issn.1671-6647.2014.01.003
Wang Guosong, Gao Shanhong, Wu Bingui, et al. Distribution features of wind energy resources in the offshore areas of China[J]. Advances in Marine Science, 2014, 32(1): 21−29. doi: 10.3969/j.issn.1671-6647.2014.01.003
|
| [51] |
Berrisford P, Kållberg P, Kobayashi S, et al. Atmospheric conservation properties in ERA-Interim[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(659): 1381−1399. doi: 10.1002/qj.864
|
| [52] |
Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553−597. doi: 10.1002/qj.828
|
| [53] |
Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the china meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
|
| [54] |
Wang G S, Hou M, Li Y, et al. Homogenization methods for the sea surface temperature data over the South China Seas[J]. IOP Conference Series: Earth and Environmental Science, 2017, 52(1): 012046.
|
| [55] |
李琰, 王国松, 范文静, 等. 中国沿海海表温度均一性检验和订正[J]. 海洋学报, 2018, 40(1): 17−28. doi: 10.3969/j.issn.0253-4193.2018.01.003
Li Yan, Wang Guosong, Fan Wenjing, et al. The homogeneity study of the sea surface temperature data along the coast of the China Seas[J]. Haiyang Xuebao, 2018, 40(1): 17−28. doi: 10.3969/j.issn.0253-4193.2018.01.003
|
| [56] |
Lee M S, Kuo Y H, Barker D M, et al. Incremental analysis updates initialization technique applied to 10-km MM5 and MM5 3DVAR[J]. Monthly Weather Review, 2006, 134(5): 1389−1404. doi: 10.1175/MWR3129.1
|
| [57] |
李欢, 王国松, 李文善, 等. 中国近海海上溢油一体化预测预警系统研究——系统介绍[J]. 海洋信息, 2018, 33(4): 44−49.
Li Huan, Wang Guosong, Li Wenshan, et al. Introduction to the China integrated offshore oil spill forecasting and early warning system[J]. Marine Information, 2018, 33(4): 44−49.
|
| [58] |
高山红, 齐伊玲, 张守宝, 等. 利用循环3DVAR改进黄海海雾数值模拟初始场Ⅰ: WRF数值试验[J]. 中国海洋大学学报, 2010, 40(10): 1−9.
Gao Shanhong, Qi Yiling, Zhang Shoubao, et al. Initial conditions improvement of sea fog numerical modeling over the yellow sea by using cycling 3DVAR Part Ⅰ: WRF numerical experiments[J]. Periodical of Ocean University of China, 2010, 40(10): 1−9.
|
| [59] |
高佳, 牟林, 王国松, 等. 马航MH370残骸漂移轨迹分析和预测[J]. 科学通报, 2016, 61(21): 2409−2418.
Gao Jia, Mu Lin, Wang Guosong, et al. Drift analysis and prediction of debris from Malaysia Airlines flight MH370[J]. Chinese Science Bulletin, 2016, 61(21): 2409−2418.
|
| [60] |
李磊, 张立杰, 陈柏纬. 基于CFD技术的陡峭山体风场模拟方法研究[J]. 气象学报, 2016, 74(4): 613−622.
Li Lei, Zhang Lijie, Chen Baiwei. The application of CFD techniques on the wind field simulation over steep mountains: A method study[J]. Acta Meteorologica Sinica, 2016, 74(4): 613−622.
|
| [61] |
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436−444. doi: 10.1038/nature14539
|