Citation: | Tian Xue,Cai Weicong,Su Jinjing, et al. Transcriptome analysis of marine microalga Emiliania huxleyi in response to virus infection[J]. Haiyang Xuebao,2019, 41(12):103–112,doi:10.3969/j.issn.0253−4193.2019.12.010 |
[1] |
Pagarete A, Corguillé G L, Tiwari B, et al. Unveiling the transcriptional features associated with coccolithovirus infection of natural Emiliania huxleyi blooms[J]. FEMS Microbiology Ecology, 2011, 78(3): 555−564. doi: 10.1111/j.1574-6941.2011.01191.x
|
[2] |
Feldmesser E, Rosenwasser S, Vardi A, et al. Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi[J]. BMC Genomics, 2014, 15(1): 1−16. doi: 10.1186/1471-2164-15-1
|
[3] |
Sheyn U, Rosenwasser S, Lehahn Y, et al. Expression profiling of host and virus during a coccolithophore bloom provides insights into the role of viral infection in promoting carbon export[J]. ISME Journal, 2018, 8(3): 704−713.
|
[4] |
Jakob I, Weggenmann F, Posten C. Cultivation of Emiliania huxleyi for coccolith production[J]. Algal Research, 2018, 31: 47−59. doi: 10.1016/j.algal.2018.01.013
|
[5] |
Tsuji Y, Yamazaki M, Suzuki I, et al. Quantitative analysis of carbon flow into photosynthetic products functioning as carbon storage in the marine Coccolithophore, Emiliania huxleyi[J]. Marine Biotechnology, 2015, 17(4): 428−440. doi: 10.1007/s10126-015-9632-1
|
[6] |
Schatz D, Shemi A, Rosenwasser S, et al. Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms[J]. New Phytologist, 2015, 204(4): 854−863.
|
[7] |
Brussaard C P. Viral control of phytoplankton populations-a review1[J]. Journal of Eukaryotic Microbiology, 2004, 51(2): 125−138. doi: 10.1111/j.1550-7408.2004.tb00537.x
|
[8] |
Martínez J M, Schroeder D C, Wilson W H. Dynamics and genotypic composition of Emiliania huxleyi and their co-occurring viruses during a coccolithophore bloom in the North Sea[J]. FEMS Microbiology Ecology, 2012, 81(2): 315−323. doi: 10.1111/j.1574-6941.2012.01349.x
|
[9] |
Schroeder D C, Oke J, Malin G, et al. Coccolithovirus (phycodnaviridae): characterisation of a new large dsDNA algal virus that infects Emiliania huxleyi[J]. Archives of Virology, 2002, 147(9): 1685−1698. doi: 10.1007/s00705-002-0841-3
|
[10] |
Wilson W H, Schroeder D C, Allen M J, et al. Complete genome sequence and lytic phase transcription profile of a coccolithovirus[J]. Science, 2005, 309(5737): 1090−1092. doi: 10.1126/science.1113109
|
[11] |
Malitsky S, Ziv C, Rosenwasser S, et al. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol[J]. New Phytologist, 2016, 210(1): 88−96. doi: 10.1111/nph.13852
|
[12] |
Ruiz E, Oosterhof M, Sandaa R, et al. Emerging interaction patterns in the Emiliania huxleyi-EhV system[J]. Viruses, 2017, 9(3): 61−75. doi: 10.3390/v9030061
|
[13] |
Rosenwasser S, Ziv C, Van Creveld S G, et al. Virocell metabolism: metabolic innovations during host-virus interactions in the ocean[J]. Trends in Microbiology, 2016, 24(10): 821−832. doi: 10.1016/j.tim.2016.06.006
|
[14] |
Kegel J U, Blaxter M, Allen M J, et al. Transcriptional host-virus interaction of Emiliania huxleyi (haptophyceae) and EhV-86 deduced from combined analysis of expressed sequence tags and microarrays[J]. European Journal of Phycology, 2010, 45(1): 1−12. doi: 10.1080/09670260903349900
|
[15] |
Kimmance S A, Allen M J, Pagarete A, et al. Reduction in photosystem Ⅱ efficiency during a virus-controlled Emiliania huxleyi bloom[J]. Marine Ecology Progress Series, 2014, 495: 65−76. doi: 10.3354/meps10527
|
[16] |
Rosenwasser S, Mausz M A, Schatz D, et al. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean[J]. Plant Cell, 2014, 26(6): 2689−2707. doi: 10.1105/tpc.114.125641
|
[17] |
Pagarete A, Allen M J, Wilson W H, et al. Host–virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: survival of the fattest[J]. Environ Microbiol, 2009, 11(11): 2840−2848. doi: 10.1111/j.1462-2920.2009.02006.x
|
[18] |
Ziv C, Malitsky S, Othman A, et al. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga [Microbiology][J]. Proceeding of the National Academy of Sciences, 2016, 113(13): E1907. doi: 10.1073/pnas.1523168113
|
[19] |
Rose S L, Fulton J M, Brown C M, et al. Isolation and characterization of lipid rafts in Emiliania huxleyi: a role for membrane microdomains in host-virus interactions[J]. Environmental Microbiology, 2014, 16(4): 1150−1166. doi: 10.1111/1462-2920.12357
|
[20] |
Sheyn U, Rosenwasser S, Ben-Dor S, et al. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean[J]. The ISME Journal, 2016, 10(7): 1742−1754. doi: 10.1038/ismej.2015.228
|
[21] |
Vardi A, Haramaty L, Van Mooy B A S, et al. Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population[J]. Proceedings of the National Academy of Sciences, 2012, 109(47): 19327−19332. doi: 10.1073/pnas.1208895109
|
[22] |
Bidle K D. Programmed cell death in unicellular phytoplankton[J]. Current Biology, 2016, 26(13): R594−R607. doi: 10.1016/j.cub.2016.05.056
|
[23] |
Bidle K D. The molecular ecophysiology of programmed cell death in marine phytoplankton[J]. Annual Review of Marine Science, 2015, 7(7): 341.
|
[24] |
Liu J W, Cai W C, Fang X, et al. Virus-induced apoptosis and phosphorylation form of metacaspase in the marine coccolithophorid Emiliania huxleyi[J]. Archives of Microbiology, 2018, 200(3): 413−422. doi: 10.1007/s00203-017-1460-4
|
[25] |
Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biology, 2009, 10(3): R25. doi: 10.1186/gb-2009-10-3-r25
|
[26] |
Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357−360. doi: 10.1038/nmeth.3317
|
[27] |
Demey C N, Li B. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1): 323−323. doi: 10.1186/1471-2105-12-323
|
[28] |
张丽丽, 张富春. 短期盐胁迫下盐穗木的转录组分析[J]. 植物研究, 2018, 38(1): 91−99. doi: 10.7525/j.issn.1673-5102.2018.01.011
Zhang Lili, Zhang Fuchun. Transcriptomic analysis of the Halostachys caspica in response to short-term salt stress[J]. Plant Research, 2018, 38(1): 91−99. doi: 10.7525/j.issn.1673-5102.2018.01.011
|
[29] |
Bochenek M, Etherington G J, Koprivova A, et al. Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi[J]. New Phytologist, 2013, 199(3): 650−662. doi: 10.1111/nph.12303
|
[30] |
Read B A, Kegel J, Klute M J, et al. Pan genome of the phytoplankton Emiliania underpins its global distribution[J]. Nature, 2013, 499(7457): 209−213. doi: 10.1038/nature12221
|
[31] |
Von Dassow P, John U, Ogata H, et al. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton[J]. ISME Journal, 2015, 9(6): 1365−1377. doi: 10.1038/ismej.2014.221
|
[32] |
Dassow P V, Ogata H, Probert I, et al. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell[J]. Genome Biology, 2009, 10(10): R114. doi: 10.1186/gb-2009-10-10-r114
|
[33] |
Fulton J M, Fredricks H F, Bidle K D, et al. Novel molecular determinants of viral susceptibility and resistance in the lipidome of Emiliania huxleyi[J]. Environmental Microbiology, 2014, 16(4): 1137−1149. doi: 10.1111/1462-2920.12358
|