Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
He Yuying,Ge Zhenpeng,Li Daoji, et al. LiDAR-based quickly recognition of beach debris[J]. Haiyang Xuebao,2019, 41(11):156–162,doi:10.3969/j.issn.0253−4193.2019.11.015
Citation: He Yuying,Ge Zhenpeng,Li Daoji, et al. LiDAR-based quickly recognition of beach debris[J]. Haiyang Xuebao,2019, 41(11):156–162,doi:10.3969/ j.issn.0253−4193.2019.11.015

LiDAR-based quickly recognition of beach debris

doi: 10.3969/j.issn.0253-4193.2019.11.015
  • Received Date: 2018-09-22
  • Rev Recd Date: 2018-12-14
  • Available Online: 2021-04-21
  • Publish Date: 2019-11-25
  • There is an increasing amount of beach debris worldwide which have serious impacts on the marine environment, especially to the marine ecosystem health and biological habitats. It has been one of the great technological difficulties on how to monitor and identify beach debris efficiently during the process of the accurately disposing beach debris. Therefore, in this paper, a new recognition method of beach debris was proposed based on field beach debris experiment on Nanhui Beach by combination of LiDAR (light detection and ranging) with record full waveform data and the Back Propagation (BP) neural network model. The results reveal that the echo amplitude and width extracted from full-waveform data can be used to identify beach debris because of their distinct waveform features. Meanwhile, beach debris can be effectively classified into foam, cloth, metal, paper and plastic with the highly accuracy rate of 79% by the BP neural network recognition. Moreover, it can be found that some beach debris are difficult to identify owing to the same material composition for these debris, which may disturb the recognition rate of BP neural network to great degree. Therefore, it can be expected that a new monitoring tool for beach debris identification by LiDAR will be popular in future.
  • loading
  • [1]
    Li W C, Tse H F, Fok L. Plastic waste in the marine environment: a review of sources, occurrence and effects[J]. Science of the Total Environment, 2016, 566–567: 333−349. doi: 10.1016/j.scitotenv.2016.05.084
    [2]
    赵肖, 綦世斌, 廖岩, 等. 我国海滩垃圾污染现状及控制对策[J]. 环境科学研究, 2016, 29(10): 1560−1566.

    Zhao Xiao, Qi Shibin, Liao Yan, et al. Investigation and control of beach litter pollution in China[J]. Research of Environmental Sciences, 2016, 29(10): 1560−1566.
    [3]
    UNEP. Marine litter, an analytical overview[Z]. UNEP Marine Litter Publications, 2005.
    [4]
    Villarrubia-Gómez P, Cornell S E, Fabres J. Marine plastic pollution as a planetary boundary threat–The drifting piece in the sustainability puzzle[J]. Marine Policy, 2018, 96: 213−220. doi: 10.1016/j.marpol.2017.11.035
    [5]
    Kako S, Isobe A, Magome S. Sequential monitoring of beach litter using webcams[J]. Marine Pollution Bulletin, 2010, 60(5): 775−779. doi: 10.1016/j.marpolbul.2010.03.009
    [6]
    Kako S, Isobe A, Magome S. Low altitude remote-sensing method to monitor marine and beach litter of various colors using a balloon equipped with a digital camera[J]. Marine Pollution Bulletin, 2012, 64(6): 1156−1162. doi: 10.1016/j.marpolbul.2012.03.024
    [7]
    Kataoka T, Hinata H, Kako S. A new technique for detecting colored macro plastic debris on beaches using webcam images and CIELUV[J]. Marine Pollution Bulletin, 2012, 64(9): 1829−1836. doi: 10.1016/j.marpolbul.2012.06.006
    [8]
    侯峰. LIDAR详细介绍及其应用举例综述[J]. 科技广场, 2014(4): 95−100. doi: 10.3969/j.issn.1671-4792.2014.04.020

    Hou Feng. Thorough introduction of LIDAR and overview of its application[J]. Science Mosaic, 2014(4): 95−100. doi: 10.3969/j.issn.1671-4792.2014.04.020
    [9]
    王金虎, 李传荣, 周梅. 全波形激光雷达数据在点云分类中的应用研究[J]. 遥感信息, 2013, 28(5): 21−27. doi: 10.3969/j.issn.1000-3177.2013.05.005

    Wang Jinhu, Li Chuanrong, Zhou Mei. Analysis of airborne full-waveform LiDAR data for supervised point cloud classification[J]. Remote Sensing Information, 2013, 28(5): 21−27. doi: 10.3969/j.issn.1000-3177.2013.05.005
    [10]
    Reitberger J, Krzystek P, Stilla U. Analysis of full waveform LiDAR data for the classification of deciduous and coniferous trees[J]. International Journal of Remote Sensing, 2008, 29(5): 1407−1431. doi: 10.1080/01431160701736448
    [11]
    Höfle B. Radiometric correction of terrestrial LiDAR point cloud data for individual maize plant detection[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 94−98. doi: 10.1109/LGRS.2013.2247022
    [12]
    冯义从, 岑敏仪, 张同刚. 基于知识的车载LiDAR地物自动分类[J]. 计算机工程与应用, 2016, 52(5): 122−126. doi: 10.3778/j.issn.1002-8331.1403-0361

    Feng Yicong, Cen Minyi, Zhang Tonggang. Knowledge-based automatic objects classification from mobile LiDAR data[J]. Computer Engineering and Applications, 2016, 52(5): 122−126. doi: 10.3778/j.issn.1002-8331.1403-0361
    [13]
    Ge Zhenpeng, Shi Huahong, Mei Xuefei, et al. Semi-automatic recognition of marine debris on beaches[J]. Scientific Reports, 2016, 6: 25759. doi: 10.1038/srep25759
    [14]
    赵建春, 李九发, 李占海, 等. 长江口南汇嘴潮滩短期冲淤演变及其动力机制研究[J]. 海洋学报, 2009, 31(4): 103−111. doi: 10.3321/j.issn:0253-4193.2009.04.012

    Zhao Jianchun, Li Jiufa, Li Zhanhai, et al. Researches on characteristics and dynamic mechanism of short-term scouring and silting changes of the tidal flat on Nanhui Spit in the Changjiang Estuary in China[J]. Haiyang Xuebao, 2009, 31(4): 103−111. doi: 10.3321/j.issn:0253-4193.2009.04.012
    [15]
    戴志军, 陈吉余, 程和琴, 等. 南汇边滩的沉积特征和沉积物输运趋势[J]. 长江流域资源与环境, 2005, 14(6): 735−739. doi: 10.3969/j.issn.1004-8227.2005.06.013

    Dai Zhijun, Chen Jiyu, Cheng Heqin, et al. Sediment characteristics and transport patterns in Nanhui Joint Area[J]. Resources and Environment in the Yangtze Basin, 2005, 14(6): 735−739. doi: 10.3969/j.issn.1004-8227.2005.06.013
    [16]
    Persson Å, Söderman U, Töpel J, et al. Visualization and analysis of full-waveform airborne laser scanner data[R]//ISPRS WG Ⅲ/3, Ⅲ/4, V/3 Workshop "Laser Scanning 2005". Enschede, The Netherlands, 2005: 103–108.
    [17]
    Wagner W, Ullrich A, Ducic V, et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 100−112. doi: 10.1016/j.isprsjprs.2005.12.001
    [18]
    Wagner W. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: basic physical concepts[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(6): 505−513. doi: 10.1016/j.isprsjprs.2010.06.007
    [19]
    杨斐, 王坤明, 马欣, 等. 应用BP神经网络分类器识别交通标志[J]. 计算机工程, 2003, 29(10): 120−121. doi: 10.3969/j.issn.1000-3428.2003.10.049

    Yang Fei, Wang Kunming, Ma Xin, et al. Application of BP neural network classifier for road traffic sign recognition[J]. Computer Engineering, 2003, 29(10): 120−121. doi: 10.3969/j.issn.1000-3428.2003.10.049
    [20]
    裴洪平, 罗妮娜, 蒋勇. 利用BP神经网络方法预测西湖叶绿素a的浓度[J]. 生态学报, 2004, 24(2): 246−251. doi: 10.3321/j.issn:1000-0933.2004.02.012

    Pei Hongping, Luo Nina, Jiang Yong. Applications of back propagation neural network for predicting the concentration of chlorophyll-a in West Lake[J]. Acta Ecologica Sinica, 2004, 24(2): 246−251. doi: 10.3321/j.issn:1000-0933.2004.02.012
    [21]
    刘峰, 于九皋. 淀粉在泡沫塑料制品中的应用[J]. 化学工业与工程, 2000, 17(1): 43−48. doi: 10.3969/j.issn.1004-9533.2000.01.009

    Liu Feng, Yu Jiugao. Appliance of starch in foamed plastic products[J]. Chemical Industry and Engineering, 2000, 17(1): 43−48. doi: 10.3969/j.issn.1004-9533.2000.01.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (600) PDF downloads(137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return