Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zhang Xinyu,Han Jia,Wang Xiao, et al. Research on wave prediction method based on nonlinear Schrödinger equation[J]. Haiyang Xuebao,2019, 41(11):15–24,doi:10.3969/j.issn.0253−4193.2019.11.002
Citation: Zhang Xinyu,Han Jia,Wang Xiao, et al. Research on wave prediction method based on nonlinear Schrödinger equation[J]. Haiyang Xuebao,2019, 41(11):15–24,doi:10.3969/j.issn.0253−4193.2019.11.002

Research on wave prediction method based on nonlinear Schrödinger equation

doi: 10.3969/j.issn.0253-4193.2019.11.002
  • Received Date: 2018-08-19
  • Rev Recd Date: 2019-02-02
  • Available Online: 2021-04-21
  • Publish Date: 2019-11-25
  • In order to study the real-time prediction method of ocean wave information, some theoretical derivation is made based on inverse scattering transformation of cubic Schrödinger equation, and a method to calculate eigenvalues from measured wave height time series is given. Then the calculated eigenvalues are used to predict spatial-temporal evolution of wave envelope. The predictions are then compared with measured time series, the results show the method has good effectiveness and accuracy. This method can provide support for big wave warning of ships or offshore platform, and time windows seeking for offshore operation under heavy sea.
  • loading
  • [1]
    Zakharov V E. Stability of periodic waves of finite amplitude on the surface of a deep fluid[J]. Journal of Applied Mechanics and Technical Physics, 1968, 9(2): 190−194.
    [2]
    Yuen H C, Lake B M. Nonlinear dynamics of deep-water gravity waves[J]. Advances in Applied Mechanics, 1982, 22: 67−229. doi: 10.1016/S0065-2156(08)70066-8
    [3]
    Lax P D. Integrals of nonlinear equations of evolution and solitary waves[J]. Communications on Pure and Applied Mathematics, 1968, 21(5): 467−490. doi: 10.1002/cpa.3160210503
    [4]
    Zakharov V E, Shabat A B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[J]. Journal of Mathematical Physics, 1972, 34(7): 62−69.
    [5]
    Its A R, Kotlyarov V R. Explicit formulas for solutions of a nonlinear Schrödinger equation[J]. Dopovidi Akademiï Nauk Ukraïns’koï RSR: Seria A, 1976(11): 965−968, 1051.
    [6]
    Tracy E R, Chen H H. Nonlinear self-modulation: An exactly solvable model[J]. Physical Review A, 1988, 37(3): 815−839. doi: 10.1103/PhysRevA.37.815
    [7]
    Osborne A R. Nonlinear ocean wave and the inverse scattering transform[M]//Pike R, Sabatier P. Burlington: Academic Press, 2002: 271-598.
    [8]
    华敏, 李响. 基于近邻刺激的改进粒子群优化算法[J]. 数学的实践与认识, 2018, 48(1): 199−206.

    Hua Min, Li Xiang. A particle swarm optimization algorithm based on neighbor stimulate[J]. Mathematics in Practice and Theory, 2018, 48(1): 199−206.
    [9]
    王皓, 高立群, 欧阳海滨. 多种群随机差分粒子群优化算法及其应用[J]. 哈尔滨工程大学学报, 2017, 38(4): 652−660.

    Wang Hao, Gao Liqun, Ouyang Haibin. Multi-population random differential particle swarm optimization and its application[J]. Journal of Harbin Engineering University, 2017, 38(4): 652−660.
    [10]
    江文山. 深水区非线性波列调变之研究[D]. 台湾: 国立成功大学, 2005.

    Jiang Wenshan. A study of mokulation of nonlinear wave trains in deep water[D]. Taiwan: National Cheng Kung University, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(3)

    Article views (541) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return