Citation: | Chen Xuegang,Wu Bin,Zheng Hao, et al. Hydrothermal systems at offshore Taiwan: Unique biological and geochemical characteristics[J]. Haiyang Xuebao,2019, 41(10):161–168,doi:10.3969/j.issn.0253−4193. 2019.10.010 |
[1] |
Chen C T A, Wang B J, Huang J F, et al. Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China[J]. Acta Oceanologica Sinica, 2005, 24(1): 125−133.
|
[2] |
Zheng Hao, Xu Changdong, Yang Liyang, et al. Diurnal variations of dissolved organic matter in the hydrothermal system of Green Island, Taiwan[J]. Marine Chemistry, 2017, 195: 61−69. doi: 10.1016/j.marchem.2017.05.003
|
[3] |
Shen Chuanchou, Wu C C, Dai Changfeng, et al. Variable uplift rate through time: Holocene coral reef and neotectonics of Lutao, eastern Taiwan[J]. Journal of Asian Earth Sciences, 2018, 156: 201−206. doi: 10.1016/j.jseaes.2018.01.016
|
[4] |
Chen C T A, Zeng Zhigang, Kuo Fuwen, et al. Tide-influenced acidic hydrothermal system offshore NE Taiwan[J]. Chemical Geology, 2005, 224(1/3): 69−81.
|
[5] |
Wu Shijun, Yang Canjun, Chen C T A. A handheld sampler for collecting organic samples from shallow hydrothermal vents[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(8): 1951−1958. doi: 10.1175/JTECH-D-12-00189.1
|
[6] |
Han Chenhua, Ye Ying, Pan Yiwen, et al. Spatial distribution pattern of seafloor hydrothermal vents to the southeastern Kueishan Tao offshore Taiwan Island[J]. Acta Oceanologica Sinica, 2014, 33(4): 37−44. doi: 10.1007/s13131-014-0405-x
|
[7] |
Ding Qian, Pan Yiwen, Huang Yuanfeng, et al. The optimization of Ag/Ag2S electrode using carrier electroplating of nano silver particles and its preliminary application to offshore Kueishan Tao, Taiwan[J]. Continental Shelf Research, 2015, 111: 262−267. doi: 10.1016/j.csr.2015.08.018
|
[8] |
Chen Xuegang, Lyu S S, Garbe-Schönberg D, et al. Heavy metals from Kueishantao shallow-sea hydrothermal vents, offshore northeast Taiwan[J]. Journal of Marine Systems, 2018, 180: 211−219. doi: 10.1016/j.jmarsys.2016.11.018
|
[9] |
Zeng Zhigang, Wang Xiaoyuan, Chen C T A, et al. Boron isotope compositions of fluids and plumes from the Kueishantao hydrothermal field off northeastern Taiwan: implications for fluid origin and hydrothermal processes[J]. Marine Chemistry, 2013, 157: 59−66. doi: 10.1016/j.marchem.2013.09.001
|
[10] |
Hung J J, Yeh H Y, Peng S H, et al. Influence of submarine hydrothermalism on sulfur and metal accumulation in surface sediments in the Kueishantao venting field off northeastern Taiwan[J]. Marine Chemistry, 2018, 198: 88−96. doi: 10.1016/j.marchem.2017.12.004
|
[11] |
Zeng Zhigang, Chen C T A, Yin Xuebo, et al. Origin of native sulfur ball from the Kueishantao hydrothermal field offshore northeast Taiwan: Evidence from trace and rare earth element composition[J]. Journal of Asian Earth Sciences, 2011, 40(2): 661−671. doi: 10.1016/j.jseaes.2010.10.019
|
[12] |
Zeng Zhigang, Liu Changhua, Chen C T A, et al. Origin of a native sulfur chimney in the Kueishantao hydrothermal field, offshore northeast Taiwan[J]. Science in China Series D: Earth Sciences, 2007, 50(11): 1746−1753. doi: 10.1007/s11430-007-0092-y
|
[13] |
Yu Mingzhen, Chen Xuegang, Garbe-Schönberg D, et al. Volatile chalcophile elements in native sulfur from a submarine hydrothermal system at Kueishantao, offshore NE Taiwan[J]. Minerals, 2019, 9(4): 245. doi: 10.3390/min9040245
|
[14] |
Chen Xuegang, Zhang Haiyan, Li Xiaohu, et al. The chemical and isotopic compositions of gas discharge from shallow-water hydrothermal vents at Kueishantao, offshore northeast Taiwan[J]. Geochemical Journal, 2016, 50(4): 341−355. doi: 10.2343/geochemj.2.0425
|
[15] |
Lin Y S, Lui H K, Lee J, et al. Fates of vent CO2 and its impact on carbonate chemistry in the shallow-water hydrothermal field offshore Kueishantao Islet, NE Taiwan[J]. Marine Chemistry, 2019, 210: 1−12. doi: 10.1016/j.marchem.2019.02.002
|
[16] |
Yang T F, Lan T F, Lee H F, et al. Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications[J]. Geochemical Journal, 2005, 39(5): 469−480. doi: 10.2343/geochemj.39.469
|
[17] |
Chen Xuegang, Lyu Shuangshuang, Zhang Pingping, et al. Gas discharges from the Kueishantao hydrothermal vents, offshore northeast Taiwan: Implications for drastic variations of magmatic/hydrothermal activities[J]. Journal of Volcanology and Geothermal Research, 2018, 353: 1−10. doi: 10.1016/j.jvolgeores.2018.01.013
|
[18] |
Yang Liyang, Zhuang Wane, Chen C T A, et al. Unveiling the transformation and bioavailability of dissolved organic matter in contrasting hydrothermal vents using fluorescence EEM-PARAFAC[J]. Water Research, 2017, 111: 195−203. doi: 10.1016/j.watres.2017.01.001
|
[19] |
Yang Liyang, Hong Huasheng, Guo Weidong, et al. Absorption and fluorescence of dissolved organic matter in submarine hydrothermal vents off NE Taiwan[J]. Marine Chemistry, 2012, 128-129: 64−71. doi: 10.1016/j.marchem.2011.10.003
|
[20] |
Chiang H T, Shyu C, Chang H, et al. Geothermal monitoring of Kueishantao Island offshore of northeastern Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences, 2010, 21(3): 563−573. doi: 10.3319/TAO.2009.11.02.01(TH)
|
[21] |
Hung J J, Yeh H Y, Peng S H, et al. External-forcing modulation on temporal variations of hydrothermalism-evidence from sediment cores in a submarine venting field off northeastern Taiwan[J]. PLoS One, 2018, 13(11): e0207774. doi: 10.1371/journal.pone.0207774
|
[22] |
Tang Kai, Liu Keshao, Jiao Nianzhi, et al. Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system[J]. PLoS One, 2013, 8(8): e72958. doi: 10.1371/journal.pone.0072958
|
[23] |
Li Yufang, Tang Kai, Zhang Lianbao, et al. Coupled carbon, sulfur, and nitrogen cycles mediated by microorganisms in the water column of a shallow-water hydrothermal ecosystem[J]. Frontiers in Microbiology, 2018, 9: 2718. doi: 10.3389/fmicb.2018.02718
|
[24] |
Zhang Yao, Zhao Zihao, Chen C T A, et al. Sulfur metabolizing microbes dominate microbial communities in andesite-hosted shallow-sea hydrothermal systems[J]. PLoS One, 2012, 7(9): e44593. doi: 10.1371/journal.pone.0044593
|
[25] |
Zeng Zhigang, Ma Yao, Wang Xiaoyuan, et al. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough[J]. Journal of Marine Systems, 2018, 180: 90−101. doi: 10.1016/j.jmarsys.2016.08.012
|
[26] |
Jeng M S, Ng N K, Ng P K L. Feeding behaviour: Hydrothermal vent crabs feast on sea “snow”[J]. Nature, 2004, 432(7020): 969. doi: 10.1038/432969a
|
[27] |
Hung J J, Peng S H, Chen C T A, et al. Reproductive adaptations of the hydrothermal vent crab Xenograpus testudinatus: An isotopic approach[J]. PLoS One, 2019, 14(2): e0211516. doi: 10.1371/journal.pone.0211516
|
[28] |
Hsiao S H, Fang T H. Hg bioaccumulation in marine copepods around hydrothermal vents and the adjacent marine environment in northeastern Taiwan[J]. Marine Pollution Bulletin, 2013, 74(1): 175−182. doi: 10.1016/j.marpolbul.2013.07.007
|
[29] |
Wang Tengwei, Chan T Y, Chan B K K. Trophic relationships of hydrothermal vent and non-vent communities in the upper sublittoral and upper bathyal zones off Kueishan Island, Taiwan: a combined morphological, gut content analysis and stable isotope approach[J]. Marine Biology, 2014, 161(11): 2447−2463. doi: 10.1007/s00227-014-2479-6
|
[30] |
Chen Y J, Wu J Y, Chen C T A, et al. Effects of low-pH stress on shell traits of the dove snail, Anachis misera, inhabiting shallow-vent environments off Kueishan Islet, Taiwan[J]. Biogeosciences, 2015, 12(9): 2631−2639. doi: 10.5194/bg-12-2631-2015
|
[31] |
Jiang Wei, Ye Panpan, Chen C T A, et al. Two novel hepatocellular carcinoma cycle inhibitory cyclodepsipeptides from a hydrothermal vent crab-associated fungus Aspergillus clavatus C2WU[J]. Marine Drugs, 2013, 11(12): 4761−4772. doi: 10.3390/md11124761
|
[32] |
Jiang Wei, Zhong Yuqian, Shen Li, et al. Stress-driven discovery of natural products from extreme marine environment-Kueishantao hydrothermal vent, a case study of metal switch valve[J]. Current Organic Chemistry, 2014, 18(7): 925−934. doi: 10.2174/138527281807140515155705
|
[33] |
Pan Chengqian, Shi Yutong, Chen Xuegang, et al. New compounds from a hydrothermal vent crab-associated fungus Aspergillus versicolor XZ-4[J]. Organic & Biomolecular Chemistry, 2017, 15(5): 1155−1163.
|
[34] |
Shi Yutong, Pan Chengqian, Wang Kuiwu, et al. Synthetic multispecies microbial communities reveals shifts in secondary metabolism and facilitates cryptic natural product discovery[J]. Environmental Microbiology, 2017, 19(9): 3606−3618. doi: 10.1111/1462-2920.13858
|
[35] |
Pan Chengqian, Shi Yuotong, Auckloo B N, et al. Four verrucosidin derivatives isolated from the hydrothermal vent sulfur-derived fungus Penicillium sp. Y-50-10[J]. Chemistry of Natural Compounds, 2018, 54(2): 253−256. doi: 10.1007/s10600-018-2316-0
|
[36] |
Shi Yutong, Pan Chengqian, Cen Suoyu, et al. Comparative metabolomics reveals defence-related modification of citrinin by Penicillium citrinum within a synthetic Penicillium–Pseudomonas community[J]. Environmental Microbiology, 2019, 21(1): 496−510. doi: 10.1111/1462-2920.14482
|
[37] |
Ye Panpan, Shen Ling, Jiang Wei, et al. Zn-driven discovery of a hydrothermal vent fungal metabolite clavatustide C, and an experimental study of the anti-cancer mechanism of Clavatustide B[J]. Marine Drugs, 2014, 12(6): 3203−3217. doi: 10.3390/md12063203
|
[38] |
Ding Chihong, Wu Xiaodan, Auckloo B N, et al. An unusual stress metabolite from a hydrothermal vent fungus Aspergillus sp. WU 243 induced by cobalt[J]. Molecules, 2016, 21(1): 105. doi: 10.3390/molecules21010105
|
[39] |
Pan Chengqian, Shi Yutong, Auckloo B N, et al. Isolation and antibiotic screening of fungi from a hydrothermal vent site and characterization of secondary metabolites from a Penicillium isolate[J]. Marine Biotechnology, 2017, 19(5): 469−479. doi: 10.1007/s10126-017-9765-5
|