Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Chen Han,Xie Tao,Fang He, et al. Sea surface oil spill identification method based on SAR polarization ratio and texture feature[J]. Haiyang Xuebao,2019, 41(9):181–190,doi:10.3969/j.issn.0253−4193.2019.09.017
Citation: Chen Han,Xie Tao,Fang He, et al. Sea surface oil spill identification method based on SAR polarization ratio and texture feature[J]. Haiyang Xuebao,2019, 41(9):181–190,doi:10.3969/j.issn.0253−4193. 2019.09.017

Sea surface oil spill identification method based on SAR polarization ratio and texture feature

doi: 10.3969/j.issn.0253-4193.2019.09.017
  • Received Date: 2018-09-08
  • Rev Recd Date: 2018-11-25
  • Available Online: 2021-04-21
  • Publish Date: 2019-09-25
  • Aiming at the characteristics of SAR images on the ocean surface, the texture feature method based on gray level co-occurrence matrix is a common method for extracting oil spill information from the sea surface, but the complex information on the actual ocean surface makes the SAR image produce a dark spot area similar to the oil spill phenomenon. The false alarm rate is obtained when the oil feature information is extracted by the texture feature method, and the extraction precision of the oil spill information is reduced. Based on the RADARSAT-2 SAR quadratic polarization image, this paper proposes a texture feature recognition method based on SAR polarization ratio image to identify and extract the oil film on the sea surface. The results show that the texture feature recognition method based on SAR polarization ratio image can effectively and accurately extract the oil spill information on the sea surface. Compared with the texture feature recognition method of VV polarization image, the false alarm rate in the oil spill monitoring process is reduced by 17.96 %, the overall accuracy of oil spill monitoring reached 96.83%.
  • loading
  • [1]
    Yin Liping, Zhang Min, Zhang Yuanling, et al. The long-term prediction of the oil-contaminated water from the Sanchi collision in the East China Sea[J]. Acta Oceanologica Sinica, 2018, 37(3): 69−72. doi: 10.1007/s13131-018-1193-5
    [2]
    Svejkovsky J, Hess M, Muskat J, et al. Characterization of surface oil thickness distribution patterns observed during the deepwater horizon (MC-252) oil spill with aerial and satellite remote sensing[J]. Marine Pollution Bulletin, 2016, 110(1): 162−176. doi: 10.1016/j.marpolbul.2016.06.066
    [3]
    张彦敏, 徐卓, 旭锋. 海上溢油合成孔径雷达探测研究[J]. 中国海洋大学学报, 2017, 47(2): 106−115.

    Zhang Yanmin, Xu Zhuo, Xu Feng. Study of oil spill detection on SAR images[J]. Periodical of Ocean University of China, 2017, 47(2): 106−115.
    [4]
    方贺, 谢涛, 周育锋, 等. 基于C-2PO模型和CMOD5.N地球物理模式函数的SAR风速反演性能评估[J]. 海洋学报, 2018, 40(9): 103−112. doi: 10.3969/j.issn.0253-4193.2018.09.009

    Fang He, Xie Tao, Zhou Yufeng, et al. Evaluation of SAR wind speed retrieved based on C-2PO model and CMOD5.N geophysical model functions[J]. Haiyang Xuebao, 2018, 40(9): 103−112. doi: 10.3969/j.issn.0253-4193.2018.09.009
    [5]
    Dabboor M, Singha S, Topouzelis K, et al. Oil spill detection using simulated radarsat constellation mission compact polarimetric SAR data[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth, TX, USA: IEEE, 2017.
    [6]
    宋莎莎, 赵朝方, 安伟, 等. 雷达波段对多极化SAR海面溢油检测极化特征参数的影响[J]. 海洋学报, 2018, 40(9): 125−136. doi: 10.3969/j.issn.0253-4193.2018.09.011

    Song Shasha, Zhao Chaofang, An Wei, et al. The influence of the radar bands on polarimetric SAR oil spill characteristics[J]. Haiyang Xuebao, 2018, 40(9): 125−136. doi: 10.3969/j.issn.0253-4193.2018.09.011
    [7]
    Brekke C, Solberg A H S. Oil spill detection by satellite remote sensing[J]. Remote Sensing of Environment, 2005, 95(1): 1−13. doi: 10.1016/j.rse.2004.11.015
    [8]
    Marghany M. Utilization of a genetic algorithm for the automatic detection of oil spill from RADARSAT-2 SAR satellite data[J]. Marine Pollution Bulletin, 2014, 89(1/2): 20−29.
    [9]
    苏腾飞, 李永香, 李洪玉. 基于面向对象和模糊逻辑的SAR溢油检测算法[J]. 海洋学报, 2016, 38(1): 69−81. doi: 10.3969/j.issn.0253-4193.2016.01.007

    Su Tengfei, Li Yongxiang, Li Hongyu. Sea oil spill detection method by SAR imagery using object-based image analysis and fuzzy logic[J]. Haiyang Xuebao, 2016, 38(1): 69−81. doi: 10.3969/j.issn.0253-4193.2016.01.007
    [10]
    孙健, 胥亚, 陈方玺, 等. 基于合成孔径雷达回波信号的海洋溢油监测方法研究[J]. 海洋学报, 2014, 36(9): 103−111. doi: 10.3969/j.issn.0253-4193.2014.09.012

    Sun Jian, Xu Ya, Chen Fangxi, et al. Research on offshore petroleum oil spilling detection using SAR echo signal[J]. Haiyang Xuebao, 2014, 36(9): 103−111. doi: 10.3969/j.issn.0253-4193.2014.09.012
    [11]
    Velotto D, Migliaccio M, Nunziata F, et al. Dual-polarized TerraSAR-X data for oil-spill observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 4751−4762. doi: 10.1109/TGRS.2011.2162960
    [12]
    Zhang Biao, Perrie W, Li Xiaofeng, et al. Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image[J]. Geophysical Research Letters, 2011, 38(10): 415−421.
    [13]
    Minchew B, Jones C E, Holt B. Polarimetric analysis of backscatter from the deepwater horizon oil spill using L-band synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3812−3830. doi: 10.1109/TGRS.2012.2185804
    [14]
    Skrunes S, Brekke C, Eltoft T. Characterization of marine surface slicks by Radarsat-2 multipolarization features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5302−5319. doi: 10.1109/TGRS.2013.2287916
    [15]
    Xie Tao, Perrie W, Fang He, et al. Effective dielectric constant model of electromagnetic backscattering from stratified air-sea surface film-sea water medium[J]. Chinese Physics B, 2017, 26(5): 054102. doi: 10.1088/1674-1056/26/5/054102
    [16]
    Girard-Ardhuin F, Mercier G, Collard F, et al. Operational oil-slick characterization by SAR imagery and synergistic data[J]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 487−495. doi: 10.1109/JOE.2005.857526
    [17]
    邹亚荣, 邹斌, 梁超. 应用极化合成孔径雷达检测海上溢油研究进展[J]. 海洋学报, 2014, 36(9): 1−6. doi: 10.3969/j.issn.0253-4193.2014.09.001

    Zou Yarong, Zou Bin, Liang Chao. Research on progress of oil spill detection using polarization SAR[J]. Haiyang Xuebao, 2014, 36(9): 1−6. doi: 10.3969/j.issn.0253-4193.2014.09.001
    [18]
    Slade B. RADARSAT-2 product description[R]. Richmond, BC, Canada: MDA Ltd., 2009.
    [19]
    Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610−621. doi: 10.1109/TSMC.1973.4309314
    [20]
    邹亚荣, 林明森, 马腾波, 等. 基于GLCM的SAR溢油纹理特征分析[J]. 海洋通报, 2010, 29(4): 455−458. doi: 10.3969/j.issn.1001-6392.2010.04.018

    Zou Yarong, Lin Mingsen, Ma Tengbo, et al. SAR feature analysis of oil spill based on GLCM[J]. Marine Science Bulletin, 2010, 29(4): 455−458. doi: 10.3969/j.issn.1001-6392.2010.04.018
    [21]
    邹亚荣, 黄磊, 张治平. 结合纹理特征的SVM岛礁信息提取分析[J]. 遥感技术与应用, 2014, 29(5): 812−817.

    Zou Yarong, Huang Lei, Zhang Zhiping. Analysis coupling features with SVM to extract information of island land use[J]. Remote Sensing Technology and Application, 2014, 29(5): 812−817.
    [22]
    侯群群, 王飞, 严丽. 基于灰度共生矩阵的彩色遥感图像纹理特征提取[J]. 国土资源遥感, 2013, 25(4): 26−32. doi: 10.6046/gtzyyg.2013.04.05

    Hou Qunqun, Wang Fei, Yan Li. Extraction of color image texture feature based on gray-level co-occurrence matrix[J]. Remote Sensing for Land & Resources, 2013, 25(4): 26−32. doi: 10.6046/gtzyyg.2013.04.05
    [23]
    Gade M, Alpers W, Hühnerfuss H, et al. Wind wave tank measurements of wave damping and radar cross sections in the presence of monomolecular surface films[J]. Journal of Geophysical Research: Oceans, 1998, 103(C2): 3167−3178. doi: 10.1029/97JC01578
    [24]
    胡召玲, 李海权, 杜培军. SAR图像纹理特征提取与分类研究[J]. 中国矿业大学学报, 2009, 38(3): 422−427. doi: 10.3321/j.issn:1000-1964.2009.03.023

    Hu Zhaoling, Li Haiquan, Du Peijun. Study on the extraction of texture features and its application in classifying SAR images[J]. Journal of China University of Mining & Technology, 2009, 38(3): 422−427. doi: 10.3321/j.issn:1000-1964.2009.03.023
    [25]
    牛莹. 基于纹理特征的星载SAR溢油监测研究[D]. 大连: 大连海事大学, 2009.

    Niu Ying. Research on oil spill monitoring by spaceborne SAR with texture[D]. Dalian: Dalian Maritime University, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (590) PDF downloads(173) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return