Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Sha Hongjie,Zhang Dong,Cui Dandan, et al. Remote sensing prediction method of coastline based on self-adaptive profile morphology[J]. Haiyang Xuebao,2019, 41(9):170–180,doi:10.3969/j.issn.0253−4193.2019.09.016
Citation: Sha Hongjie,Zhang Dong,Cui Dandan, et al. Remote sensing prediction method of coastline based on self-adaptive profile morphology[J]. Haiyang Xuebao,2019, 41(9):170–180,doi:10.3969/j.issn.0253−4193. 2019.09.016

Remote sensing prediction method of coastline based on self-adaptive profile morphology

doi: 10.3969/j.issn.0253-4193.2019.09.016
  • Received Date: 2018-09-06
  • Rev Recd Date: 2018-12-06
  • Available Online: 2021-04-21
  • Publish Date: 2019-09-25
  • The muddy coast has a large change in scouring and silting, and the beach profile is diverse. Firstly, according to the tidal range relationship between muti-temporal remote sensing watelines, the shape of the shoreline is automatically judged, and then the different functions are used to fit the profile. A new method of coastline remote sensing prediction based on self-adaptive profile morphology is constructed. The central muddy coast in Jiangsu has been empirically applied. The research shows that the concave-shaped erosion shore section, the slope-shaped gentle bank section and the upper convex-shaped siltation section use a three-exponential decay function, a linear function and a second-order polynomial function respectively to have a good profile fitting effect, using three waterlines. The absolute slope error of the profile obtained by data fitting is 0.20‰, –0.17‰, and 0.13‰, respectively, which is less than an order of magnitude than the measured average slope. When using the five waterlines data fitting to calculate the coastline, the error of the coastline plane position of the erosion shore section and gentle shore section are 6.5 m and –91.96 m, respectively, and the error is reduced by about 82.4% compared with the average slope method. Further consideration of seasonal changes in the beach, using the waterline data of the winter to calculate the coastline, has little effect on the erosion of the shore and the long section of the silt, but for the slope-shaped smooth section, the error is reduced by about 63.65%, so the use of winter waterline data has a higher shoreline projection accuracy than the season without distinction.
  • loading
  • [1]
    申家双, 翟京生, 郭海涛. 海岸线提取技术研究[J]. 海洋测绘, 2009, 29(6): 74−77. doi: 10.3969/j.issn.1671-3044.2009.06.021

    Shen Jiashuang, Zhai Jingsheng, Guo Haitao. Study on coastline extraction technology[J]. Hydrographic Surveying and Charting, 2009, 29(6): 74−77. doi: 10.3969/j.issn.1671-3044.2009.06.021
    [2]
    杨晓梅, 周成虎, 杜云艳, 等. 海岸带遥感综合技术与实例研究[M]. 北京: 海洋出版社, 2005: 125-127.

    Yang Xiaomei, Zou Chenghu, Du Yunyan, et al. Case Study on Remote Sensing Technology of Coastal Zone[M]. Beijing: China Ocean Press, 2005: 125-127.
    [3]
    Li Wenyu, Gong Peng. Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery[J]. Remote Sensing of Environment, 2016, 179: 196−209. doi: 10.1016/j.rse.2016.03.031
    [4]
    崔丹丹, 张东, 吕林, 等. 基于潮汐分带校正的海岸线遥感推算研究[J]. 海洋测绘, 2017, 37(5): 52−55. doi: 10.3969/j.issn.1671-3044.2017.05.011

    Cui Dandan, Zhang Dong, Lü Lin, et al. Coastline remote sensing prediction based on tide zoning correction[J]. Hydrographic Surveying and Charting, 2017, 37(5): 52−55. doi: 10.3969/j.issn.1671-3044.2017.05.011
    [5]
    刘艳霞, 黄海军, 丘仲锋, 等. 基于影像间潮滩地形修正的海岸线监测研究——以黄河三角洲为例[J]. 地理学报, 2012, 67(3): 377−387. doi: 10.11821/xb201203009

    Liu Yanxia, Huang Haijun, Qiu Zhongfeng, et al. Monitoring change and position of coastlines from satellite images using slope correction in a tidal flat: A case study in the Yellow River Delta[J]. Acta Geographica Sinica, 2012, 67(3): 377−387. doi: 10.11821/xb201203009
    [6]
    党亚民, 章传银, 周兴华, 等. 海岛岸线遥感立体测图精细测量方法[J]. 测绘通报, 2017(11): 47−50.

    Dang Yamin, Zhang Chuanyin, Zhou Xinghua, et al. Shoreline surveying method based on the stereo imaging and mapping[J]. Bulletin of Surveying and Mapping, 2017(11): 47−50.
    [7]
    陈君, 王义刚, 蔡辉. 江苏沿海潮滩剖面特征研究[J]. 海洋工程, 2010, 28(4): 90−96. doi: 10.3969/j.issn.1005-9865.2010.04.013

    Chen Jun, Wang Yigang, Cai Hui. Profile characteristics study of the Jiangsu coast[J]. The Ocean Engineering, 2010, 28(4): 90−96. doi: 10.3969/j.issn.1005-9865.2010.04.013
    [8]
    程珺, 高抒, 汪亚平, 等. 苏北近岸海域表层沉积物粒度及其对环境动力的响应[J]. 海洋地质与第四纪地质, 2009, 29(1): 17−22.

    Cheng Jun, Gao Shu, Wang Yaping, et al. Grain size characteristics of surficial sediments and their response to hydrodynamics over the coastal waters of northern Jiangsu Province[J]. Marine Geology & Quaternary Geology, 2009, 29(1): 17−22.
    [9]
    闫秋双, 刘荣杰, 马毅. 1973年以来射阳河口附近海岸蚀淤变化遥感分析[J]. 海洋科学, 2015, 39(9): 94−100. doi: 10.11759/hykx20130917002

    Yan Qiushuang, Liu Rongjie, Ma Yi. Remote sensing analysis of shoreline changes along the coast near the Sheyang River Estuary of Jiangsu Province since 1973[J]. Marine Sciences, 2015, 39(9): 94−100. doi: 10.11759/hykx20130917002
    [10]
    刘燕春, 张鹰. 基于遥感岸线识别技术的射阳河口潮滩冲淤演变研究[J]. 海洋通报, 2010, 29(6): 658−663. doi: 10.3969/j.issn.1001-6392.2010.06.011

    Liu Yanchun, Zhang Ying. Study on the tidal flat evolution through changes of coastline and beach line of Sheyang River Estuary by the remote sensing[J]. Marine Science Bulletin, 2010, 29(6): 658−663. doi: 10.3969/j.issn.1001-6392.2010.06.011
    [11]
    张长宽, 龚政, 陈永平, 等. 潮滩演变研究进展及前沿问题[C]//第十八届中国海洋(岸)工程学术讨论会论文集(下). 北京: 海洋出版社, 2017: 759-766.

    Zhang Changkuan, Gong Zheng, Chen Yongping, et al. Research progress and frontier issues of tidal flat evolution[C]//The 18th Academic China Marine (Offshore) Engineering Symposium. Beijing: China Ocean Press, 2017: 759–766.
    [12]
    高抒, 朱大奎. 江苏淤泥质海岸剖面的初步研究[J]. 南京大学学报: 自然科学版, 1988, 24(1): 75−84.

    Gao Shu, Zhu Dakui. The profile of Jiangsu's mud coast[J]. Journal of Nanjing University: Natural Sciences Edition, 1988, 24(1): 75−84.
    [13]
    龚政, 靳闯, 张长宽, 等. 江苏淤泥质潮滩剖面演变现场观测[J]. 水科学进展, 2014, 25(6): 880−887.

    Gong Zheng, Jin Chuang, Zhang Changkuan, et al. Surface elevation variation of the Jiangsu mudflats: Field observation[J]. Advances in Water Science, 2014, 25(6): 880−887.
    [14]
    龚政, 张长宽, 陶建峰, 等. 淤长型泥质潮滩双凸形剖面形成机制[J]. 水科学进展, 2013, 24(2): 212−219.

    Gong Zheng, Zhang Changkuan, Tao Jianfeng, et al. Mechanisms for the evolution of double-convex cross-shore profile over accretional mudflats[J]. Advances in Water Science, 2013, 24(2): 212−219.
    [15]
    Pritchard D, Hogg A J, Roberts W. Morphological modelling of intertidal mudflats: the role of cross-shore tidal currents[J]. Continental Shelf Research, 2002, 22(11/13): 1887−1895.
    [16]
    刘秀娟, 高抒, 汪亚平. 淤长型潮滩剖面形态演变模拟: 以江苏中部海岸为例[J]. 地球科学: 中国地质大学学报, 2010, 35(4): 542−550.

    Liu Xiujuan, Gao Shu, Wang Yaping. Modeling the shore-normal profile shape evolution for an accretional tidal flat on the central Jiangsu Coast[J]. Earth Science: Journal of China University of Geosciences, 2010, 35(4): 542−550.
    [17]
    陈玮彤, 张东, 崔丹丹, 等. 基于遥感的江苏省大陆岸线岸滩时空演变[J]. 地理学报, 2018, 73(7): 1365−1380.

    Chen Weitong, Zhang Dong, Cui Dandan, et al. Monitoring spatial and temporal changes in the continental coastline and the intertidal zone in Jiangsu Province, China[J]. Acta Geographica Sinica, 2018, 73(7): 1365−1380.
    [18]
    于彩霞, 许军, 黄文骞, 等. 海岸线及其测绘技术探讨[J]. 测绘工程, 2015, 24(7): 1−5. doi: 10.3969/j.issn.1006-7949.2015.07.001

    Yu Caixia, Xu Jun, Huang Wenqian, et al. Discussion on the mapping of coastline[J]. Engineering of Surveying and Mapping, 2015, 24(7): 1−5. doi: 10.3969/j.issn.1006-7949.2015.07.001
    [19]
    Mcfeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425−1432. doi: 10.1080/01431169608948714
    [20]
    韩震, 郭永飞. 基于小波多分辨率分析提取长江口淤泥质潮滩水边线[J]. 海洋科学, 2011, 35(7): 67−70.

    Han Zhen, Guo Yongfei. Waterside line information extraction of tidal flat at the Yangtze River Estuary by wavelet multi-resolution analysis[J]. Marine Sciences, 2011, 35(7): 67−70.
    [21]
    杨扬, 庞重光. 黄东海表层悬沙浓度次级锋面及其季节变化初探[J]. 泥沙研究, 2012(2): 41−46. doi: 10.3969/j.issn.0468-155X.2012.02.007

    Yang Yang, Pang Chongguang. Suspended sediment sub-front and its seasonal variability in Yellow and East China seas[J]. Journal of Sediment Research, 2012(2): 41−46. doi: 10.3969/j.issn.0468-155X.2012.02.007
    [22]
    万延森, 张耆年. 江苏近海辐射状沙脊群的泥沙运动与来源[J]. 海洋与湖沼, 1985, 16(5): 392−399.

    Wan Yansen, Zhang Qinian. The source and movement of sediments of Radiating Sand Ridges off Jiangsu Coast[J]. Oceanologia et Limnologia Sinica, 1985, 16(5): 392−399.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article views (455) PDF downloads(216) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return